Reversible Monadic Computing

被引:7
|
作者
Heunen, Chris [1 ]
Karvonen, Martti [2 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford OX1 2JD, England
[2] Aalto Univ, Dept Math & Syst Anal, Espoo, Finland
基金
英国工程与自然科学研究理事会;
关键词
Frobenius monad; dagger category; reversible computing; quantum measurement;
D O I
10.1016/j.entcs.2015.12.014
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We extend categorical semantics of monadic programming to reversible computing, by considering monoidal closed dagger categories: the dagger gives reversibility, whereas closure gives higher-order expressivity. We demonstrate that Frobenius monads model the appropriate notion of coherence between the dagger and closure by reinforcing Cayley's theorem; by proving that effectful computations (Kleisli morphisms) are reversible precisely when the monad is Frobenius; by characterizing the largest reversible subcategory of Eilenberg-Moore algebras; and by identifying the latter algebras as measurements in our leading example of quantum computing. Strong Frobenius monads are characterized internally by Frobenius monoids.
引用
收藏
页码:217 / 237
页数:21
相关论文
共 50 条
  • [21] Reversible computing and cellular automata - A survey
    Morita, Kenichi
    THEORETICAL COMPUTER SCIENCE, 2008, 395 (01) : 101 - 131
  • [22] Quantum Foundations of Classical Reversible Computing
    Frank, Michael P.
    Shukla, Karpur
    ENTROPY, 2021, 23 (06)
  • [23] Reversible Fluxon Logic for Future Computing
    Osborn, Kevin D.
    Wustmann, Waltraut
    2019 IEEE INTERNATIONAL SUPERCONDUCTIVE ELECTRONICS CONFERENCE (ISEC), 2019,
  • [25] Revisiting Logic Locking for Reversible Computing
    Limaye, Nimisha
    Yasin, Muhammad
    Sinanoglu, Ozgur
    2019 IEEE EUROPEAN TEST SYMPOSIUM (ETS), 2019,
  • [26] REVERSIBLE NONLINEAR INTERFACE OPTICAL COMPUTING
    GOLSHAN, R
    BEDI, JS
    OPTICAL ENGINEERING, 1989, 28 (06) : 683 - 686
  • [27] REVERSIBLE COMPUTING AND PHYSICAL LAW - REPLY
    LANDAUER, R
    PHYSICS TODAY, 1992, 45 (03) : 100 - 100
  • [28] Computing the nearest reversible Markov chain
    Nielsen, A. J. N.
    Weber, M.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2015, 22 (03) : 483 - 499
  • [29] Using group theory in reversible computing
    Van Rentergem, Yvan
    De Vos, Alexis
    De Keyser, Koen
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 2382 - 2389
  • [30] Reversible Gates: A Paradigm Shift in Computing
    Naz, Syed Farah
    Shah, Ambika Prasad
    IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS, 2023, 4 : 241 - 257