VARIATIONAL CONSTRUCTION OF CONNECTING ORBITS

被引:250
|
作者
MATHER, JN [1 ]
机构
[1] PRINCETON UNIV,DEPT MATH,PRINCETON,NJ 08544
关键词
LAGRANGIAN SYSTEM; ACTION MINIMIZING SETS; CONNECTING ORBITS;
D O I
10.5802/aif.1377
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the context of certain periodic Lagrangian systems, we find sufficient conditions for the existence of an orbit connecting two action minimizing sets. We also find sufficient conditions for the existence of an orbit which visits (to within epsilon) each of a sequence of action minimizing sets, in turn. These results generalize to n degrees of freedom results previously obtained in 1 degree of freedom (area preserving mappings) [Ma5].
引用
收藏
页码:1349 / 1386
页数:38
相关论文
共 50 条
  • [21] Ideal systems and connecting orbits
    Yu S.-X.
    Zheng Z.-H.
    Hu F.-N.
    Acta Mathematicae Applicatae Sinica, 2004, 20 (4) : 617 - 622
  • [22] ON THE EXISTENCE AND UNIQUENESS OF CONNECTING ORBITS
    SELGRADE, JF
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (10) : 1123 - 1125
  • [23] Isolating block and existence of connecting orbits
    Yu, SX
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (06): : 572 - 577
  • [24] Connecting orbits of autonomous Lagrangian systems
    Li, Xia
    Cheng, Chong-Qing
    NONLINEARITY, 2010, 23 (01) : 119 - 141
  • [25] Successive continuation for locating connecting orbits
    Doedel, EJ
    Friedman, MJ
    Kunin, BI
    NUMERICAL ALGORITHMS, 1997, 14 (1-3) : 103 - 124
  • [26] Numerical computation of connecting orbits on a manifold
    Liu, Yuanyuan
    Zou, Yongkui
    NUMERICAL ALGORITHMS, 2012, 61 (03) : 429 - 464
  • [27] Transversal connecting orbits from shadowing
    Brian A. Coomes
    Hüseyin Koçak
    Kenneth J. Palmer
    Numerische Mathematik, 2007, 106 : 427 - 469
  • [28] Transversal connecting orbits from shadowing
    Coomes, Brian A.
    Kocak, Hueseyin
    Palmer, Kenneth J.
    NUMERISCHE MATHEMATIK, 2007, 106 (03) : 427 - 469
  • [29] Isolating block and existence of connecting orbits
    余澍祥
    Science China Mathematics, 1997, (06) : 572 - 577
  • [30] Connecting orbits for a reversible Hamiltonian system
    Rabinowitz, PH
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 1767 - 1784