Connecting orbits for a reversible Hamiltonian system

被引:20
|
作者
Rabinowitz, PH [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
D O I
10.1017/S0143385700000985
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of heteroclinic and homoclinic solutions which shadow corresponding chains of such solutions is established for a class of reversible Hamiltonian systems. The proof involves elementary minimization arguments.
引用
收藏
页码:1767 / 1784
页数:18
相关论文
共 50 条
  • [1] CONNECTING ORBITS FOR SUBHARMONIC SOLUTIONS IN TIME REVERSIBLE HAMILTONIAN SYSTEMS
    Chen, Chao-Nien
    Tzeng, Shyuh-Yaur
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (03): : 431 - 450
  • [2] Connecting orbits of Hamiltonian systems
    Bolotin, SV
    NONLINEAR FUNCTIONAL ANALYSIS AND APPLICATIONS TO DIFFERENTIAL EQUATIONS, PROCEEDINGS OF THE SECOND SCHOOL, 1998, : 36 - 59
  • [3] Brake Orbits of a Reversible Even Hamiltonian System Near an Equilibrium
    Zhong Jie Liu
    Fan Jing Wang
    Duan Zhi Zhang
    Acta Mathematica Sinica, English Series, 2022, 38 : 263 - 280
  • [4] Brake Orbits of a Reversible Even Hamiltonian System Near an Equilibrium
    Zhong Jie LIU
    Fan Jing WANG
    Duan Zhi ZHANG
    ActaMathematicaSinica,EnglishSeries, 2022, (01) : 263 - 280
  • [5] Brake Orbits of a Reversible Even Hamiltonian System Near an Equilibrium
    Liu, Zhong Jie
    Wang, Fan Jing
    Zhang, Duan Zhi
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (01) : 263 - 280
  • [6] Periodic solutions and their connecting orbits of hamiltonian systems
    Chen, CN
    Tzeng, SY
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 177 (01) : 121 - 145
  • [7] Variational and penalization methods for studying connecting orbits of Hamiltonian systems
    Chen, Chao-Nien
    Tzeng, Shyuh-yaur
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2000,
  • [8] SOME RESULTS ON CONNECTING ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS
    RABINOWITZ, PH
    TANAKA, K
    MATHEMATISCHE ZEITSCHRIFT, 1991, 206 (03) : 473 - 499
  • [9] Homoclinic orbits of a Hamiltonian system
    Y. Ding
    M. Willem
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1999, 50 : 759 - 778
  • [10] Homoclinic orbits of a Hamiltonian system
    Ding, YH
    Willem, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (05): : 759 - 778