Homoclinic orbits of a Hamiltonian system

被引:67
|
作者
Ding, YH [1 ]
Willem, M
机构
[1] Acad Sinica, Inst Math, Beijing 100080, Peoples R China
[2] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
来源
关键词
homoclinic orbits; Hamiltonian systems; linking theorem; concentation-compactness;
D O I
10.1007/s000330050177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish existence results of homoclinic orbits of the first order time-dependent Hamiltonian system (z)over dot = JH(z) (t, z), where H(t, z) depends periodically on t, H(t, z) = (1)/(2)zL(t)z + W(t , z), L(t) is a symmetric matrix valued function and W(t, z) satisfies certain global superquadratic condition. We relax partly the assumption often used before: L is independent of t and sp(JL)boolean AND iR = phi.
引用
收藏
页码:759 / 778
页数:20
相关论文
共 50 条
  • [1] Homoclinic orbits of a Hamiltonian system
    Y. Ding
    M. Willem
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1999, 50 : 759 - 778
  • [2] Homoclinic orbits for a nonperiodic Hamiltonian system
    Ding, Yanheng
    Jeanjean, Louis
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 237 (02) : 473 - 490
  • [3] Homoclinic orbits of an unbounded superquadratic Hamiltonian system
    Clement, P.
    Felmer, P.
    Mitidieri, E.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 320 (12):
  • [4] HOMOCLINIC ORBITS OF AN UNBOUNDED SUPERQUADRATIC HAMILTONIAN SYSTEM
    CLEMENT, P
    FELMER, P
    MITIDIERI, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (12): : 1481 - 1484
  • [5] HOMOCLINIC ORBITS OF NONPERIODIC SUPERQUADRATIC HAMILTONIAN SYSTEM
    Zhang, Jian
    Tang, Xianhua
    Zhang, Wen
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (06): : 1855 - 1867
  • [7] HOMOCLINIC ORBITS IN HAMILTONIAN SYSTEMS
    DEVANEY, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A198 - A198
  • [8] HOMOCLINIC ORBITS IN HAMILTONIAN SYSTEMS
    DEVANEY, RL
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1976, 21 (02) : 431 - 438
  • [9] Odd Homoclinic Orbits for a Second Order Hamiltonian System
    Maia, Liliane A.
    Miyagaki, Olimpio H.
    Soares, Sergio H. M.
    ADVANCED NONLINEAR STUDIES, 2012, 12 (01) : 67 - 87
  • [10] Homoclinic Orbits of Nonperiodic Super Quadratic Hamiltonian System
    Jian Ding
    Junxiang Xu
    Fubao Zhang
    Acta Applicandae Mathematicae, 2010, 110 : 1353 - 1371