IMPLEMENTATION OF THE HALF-SWEEP AOR ITERATIVE ALGORITHM FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS

被引:0
|
作者
Sunarto, Andang [1 ]
Sulaiman, Jumat [1 ]
Saudi, Azali [2 ]
机构
[1] Univ Malaysia Sabah, Fac Sci & Nat Resources, Kota Kinabalu, Sabah, Malaysia
[2] Univ Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu, Sabah, Malaysia
来源
JURNAL TEKNOLOGI | 2016年 / 78卷 / 6-4期
关键词
HSAOR; space-fractional; caputo; implicit finite difference scheme;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider the numerical solution of one dimensional space-fractional diffusion equation. The half-sweep AOR (HSAOR) iterative method is applied to solve linear system generated from discretization of one dimensional space-fractional diffusion equation using Caputo's derivative operator and half-sweep implicit finite difference scheme. Furthermore, the formulation and implementation of HSAOR iterative method to solve the problem are also presented. Two examples and comparisons with FSAOR iterative method are given to show the effectiveness of the proposed method. From numerical results obtained, it has shown that the HSAOR iterative method is superior as compared with the FSAOR methods.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [41] Caputo's Implicit Solution of Space-Fractional Diffusion Equations by QSSOR Iteration
    Sunarto, Andang
    Sulaiman, Jumat
    Saudi, Azali
    ADVANCED SCIENCE LETTERS, 2018, 24 (03) : 1927 - 1931
  • [42] A lopsided scaled DTS preconditioning method for the discrete space-fractional diffusion equations
    Tang, Shi-Ping
    Huang, Yu-Mei
    APPLIED MATHEMATICS LETTERS, 2022, 131
  • [43] Efficient numerical methods for Riesz space-fractional diffusion equations with fractional Neumann boundary conditions
    Xie, Changping
    Fang, Shaomei
    APPLIED NUMERICAL MATHEMATICS, 2022, 176 : 1 - 18
  • [44] Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions
    Jia, Jinhong
    Wang, Hong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 359 - 369
  • [45] A finite difference scheme for semilinear space-fractional diffusion equations with time delay
    Hao, Zhaopeng
    Fan, Kai
    Cao, Wanrong
    Sun, Zhizhong
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 238 - 254
  • [46] Spectral Galerkin Methods for Riesz Space-Fractional Convection-Diffusion Equations
    Zhang, Xinxia
    Wang, Jihan
    Wu, Zhongshu
    Tang, Zheyi
    Zeng, Xiaoyan
    FRACTAL AND FRACTIONAL, 2024, 8 (07)
  • [47] Approximation Solution of the Fractional Parabolic Partial Differential Equation by the Half-Sweep and Preconditioned Relaxation
    Sunarto, Andang
    Agarwal, Praveen
    Chew, Jackel Vui Lung
    Sulaiman, Jumat
    SYMMETRY-BASEL, 2021, 13 (06):
  • [48] Numerical solutions of space-fractional diffusion equations via the exponential decay kernel
    Alqhtani, Manal
    Saad, Khaled M.
    AIMS MATHEMATICS, 2022, 7 (04): : 6535 - 6549
  • [49] A PRECONDITIONED FAST HERMITE FINITE ELEMENT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Zhao, Meng
    Cheng, Aijie
    Wang, Hong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (09): : 3529 - 3545
  • [50] A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations
    Huang, Xin
    Fang, Zhi-Wei
    Sun, Hai-Wei
    Zhang, Chun-Hua
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (16): : 3081 - 3096