IMPLEMENTATION OF THE HALF-SWEEP AOR ITERATIVE ALGORITHM FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS

被引:0
|
作者
Sunarto, Andang [1 ]
Sulaiman, Jumat [1 ]
Saudi, Azali [2 ]
机构
[1] Univ Malaysia Sabah, Fac Sci & Nat Resources, Kota Kinabalu, Sabah, Malaysia
[2] Univ Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu, Sabah, Malaysia
来源
JURNAL TEKNOLOGI | 2016年 / 78卷 / 6-4期
关键词
HSAOR; space-fractional; caputo; implicit finite difference scheme;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider the numerical solution of one dimensional space-fractional diffusion equation. The half-sweep AOR (HSAOR) iterative method is applied to solve linear system generated from discretization of one dimensional space-fractional diffusion equation using Caputo's derivative operator and half-sweep implicit finite difference scheme. Furthermore, the formulation and implementation of HSAOR iterative method to solve the problem are also presented. Two examples and comparisons with FSAOR iterative method are given to show the effectiveness of the proposed method. From numerical results obtained, it has shown that the HSAOR iterative method is superior as compared with the FSAOR methods.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [31] Exact solutions to nonlinear nonautonomous space-fractional diffusion equations with absorption
    Lenzi, EK
    Mendes, GA
    Mendes, RS
    da Silva, LR
    Lucena, LS
    PHYSICAL REVIEW E, 2003, 67 (05):
  • [32] Discrete monotone method for space-fractional nonlinear reaction–diffusion equations
    Salvador Flores
    Jorge E. Macías-Díaz
    Ahmed S. Hendy
    Advances in Difference Equations, 2019
  • [33] A fast method for variable-order space-fractional diffusion equations
    Jia, Jinhong
    Zheng, Xiangcheng
    Fu, Hongfei
    Dai, Pingfei
    Wang, Hong
    NUMERICAL ALGORITHMS, 2020, 85 (04) : 1519 - 1540
  • [34] A fast method for variable-order space-fractional diffusion equations
    Jinhong Jia
    Xiangcheng Zheng
    Hongfei Fu
    Pingfei Dai
    Hong Wang
    Numerical Algorithms, 2020, 85 : 1519 - 1540
  • [35] New preconditioning and half-sweep accelerated overrelaxation solution for fractional differential equation
    Agarwal, Praveen
    Sunarto, Andang
    Chew, Jackel Vui Lung
    Sulaiman, Jumat
    Momani, Shaher
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2023, 35 (02)
  • [36] A modified regularized algorithm for a semilinear space-fractional backward diffusion problem
    Jiang, Xiaoying
    Xu, Dinghua
    Zhang, Qifeng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (16) : 5996 - 6006
  • [37] A fast preconditioning iterative method for solving the discretized second-order space-fractional advection-diffusion equations
    Tang, Shi-Ping
    Huang, Yu-Mei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 438
  • [38] Dominant Hermitian splitting iteration method for discrete space-fractional diffusion equations
    Lu, Kang-Ya
    Xie, Dong-Xiu
    Chen, Fang
    Muratova, Galina, V
    APPLIED NUMERICAL MATHEMATICS, 2021, 164 : 15 - 28
  • [39] Spectral solutions for diffusion equations of Riesz distributed-order space-fractional
    Abdelkawy, Mohamed A.
    Al-Shomrani, Mohamed M.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (02) : 1045 - 1054
  • [40] Global solution of space-fractional diffusion equations with nonlinear reaction source terms
    Trong, Dang Duc
    Dien, Nguyen Minh
    Viet, Tran Quoc
    APPLICABLE ANALYSIS, 2020, 99 (15) : 2707 - 2737