Thermal and optical efficiency investigation of a parabolic trough collector

被引:155
|
作者
Tzivanidis, C. [1 ]
Bellos, E. [1 ]
Korres, D. [1 ]
Antonopoulos, K. A. [1 ]
Mitsopoulos, G. [1 ]
机构
[1] Natl Tech Univ Athens, Sch Mech Engn, Thermal Dept, GR-15773 Athens, Greece
关键词
Parabolic trough collector; Heat convection coefficient; Thermal efficiency; Solidworks; Local concentration ratio; Optical efficiency;
D O I
10.1016/j.csite.2015.10.005
中图分类号
O414.1 [热力学];
学科分类号
摘要
Solar energy utilization is a promising Renewable Energy source for covering a variety of energy needs of our society. This study presents the most well-known solar concentrating system, the parabolic trough collector, which is operating efficiently in high temperatures. The simulation tool of this analysis is the commercial software Solidworks which simulates complicated problems with an easy way using the finite elements method. A small parabolic trough collector model is designed and simulated for different operating conditions. The goal of this study is to predict the efficiency of this model and to analyze the heat transfer phenomena that take place. The efficiency curve is compared to a one dimensional numerical model in order to make a simple validation. Moreover, the temperature distribution in the absorber and inside the tube is presented while the heat flux distribution in the outer surface of the absorber is given. The heat convection coefficient inside the tube is calculated and compared with the theoretical one according to the literature. Also the angle efficiency modifier is calculated in order to predict the thermal and optical efficiency for different operating conditions. The final results show that the PTC model performs efficiently and all the calculations are validated. (C) 2015 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:226 / 237
页数:12
相关论文
共 50 条
  • [21] Optical and Thermal Performance of a Parabolic Trough Collector for Different Receiver Geometries
    Al-Dulaimi, Mustafa J.
    Amori, Karima E.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (12) : 16117 - 16133
  • [22] Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system
    Quezada-Garcia, Sergio
    Sanchez-Mora, Heriberto
    Polo-Labarrios, Marco A.
    Cazares-Ramirez, Ricardo I.
    CASE STUDIES IN THERMAL ENGINEERING, 2019, 16
  • [23] Enhancing the thermal efficiency of parabolic trough collector using rotary receiver tube
    Reddy, N. Sreenivasalu
    Subramanya, S. Gowreesh
    Vishwanath, K. C.
    Karthikeyan, M.
    Kanchiraya, S.
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 51
  • [24] Experimental investigation on novel parabolic trough collector
    Lingaiah G.
    Sridhar K.
    Lingaiah, G. (gajjelalingaiah@gmail.com), 1600, River Publishers (35): : 237 - 248
  • [25] Study on thermal performance of a parabolic trough collector
    Xiong, Ya-Xuan
    Wu, Yu-Ting
    Ma, Chong-Fang
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2012, 33 (11): : 1950 - 1953
  • [26] Thermal Performance Analysis of Parabolic Trough Collector
    Bhakta, Amit Kumar
    Kumar, Sunil
    Singh, Shailendra Narayan
    PROCEEDINGS OF THE 25TH NATIONAL AND 3RD INTERNATIONAL ISHMT-ASTFE HEAT AND MASS TRANSFER CONFERENCE, IHMTC 2019, 2019,
  • [27] Optical simulation of a parabolic solar trough collector
    Grena, Roberto
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2010, 29 (01) : 19 - 36
  • [28] Experimental investigation of improved parabolic trough solar collector thermal efficiency using novel receiver geometry design
    Al-Rabeeah A.Y.
    Seres I.
    Farkas I.
    International Journal of Thermofluids, 2023, 18
  • [29] Optical, thermal, and structural performance analyses of a parabolic-trough solar collector
    Wang, Chunwei
    Hu, Yanwei
    He, Yurong
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2020, 12 (05)
  • [30] Optical and thermal performance analysis of a micro parabolic trough collector for building integration
    Yang, Moucun
    Moghimi, M. A.
    Zhu, Yuezhao
    Qiao, Runpeng
    Wang, Yinfeng
    Taylor, Robert A.
    APPLIED ENERGY, 2020, 260