Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system

被引:28
|
作者
Quezada-Garcia, Sergio [1 ]
Sanchez-Mora, Heriberto [1 ]
Polo-Labarrios, Marco A. [2 ]
Cazares-Ramirez, Ricardo I. [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ingn, Av Univ 3000,Ciudad Univ, Coyoacan 04510, Mexico
[2] Univ Autonoma Metropolitana Cuajimalpa, Av Vasco Quiroga 4871, Santa Fe Cuajimalpa 05348, Cuajimalpa De M, Mexico
[3] Univ Autonoma Metropolitana Iztapalapa, Av San Rafael Atlixco 186,Leyes Reforma 1ra Secc, Iztapalapa 09340, Mexico
关键词
Solar energy; Parabolic solar trough collector; Nanofluids; Heat transfer in steady state; Reduce order mathematical model; HEAT-TRANSFER; PERFORMANCE ANALYSIS; EXERGY ANALYSIS; NANOFLUIDS; STORAGE; POWER; CFD; OPTIMIZATION; TECHNOLOGIES;
D O I
10.1016/j.csite.2019.100523
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study presents a reduced order mathematical model to calculate the heat transfer in steady state in a parabolic trough collector, in which the radial and axial temperature profile of the system is obtained. To solve the model an iterative calculation sequence is used and implemented in Python software, in additional OpenGL is used to generate a schematic visualization of the system. Next, results are validated with data from two different heat-carrier fluids published in the literature, obtaining a maximum relative error less than 10%. The model is used to determine the thermal efficiency using water, thermal oil and nanofluids as heat-carrier fluids. Results show that the thermal efficiency of the parabolic trough collector is higher with nanofluids containing a higher volume fraction of nanoparticles: with a volume fraction of 0.04 and 0.02, the thermal efficiency is of 80% and 79%, respectively. The thermal oil has the lowest efficiency with a maximum efficiency of 76%. The nanofluids allow working at low-pressure levels in the parabolic trough collector compared to pressurized water.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Modeling and Simulation of Solar Thermal Power System Using Parabolic Trough Collector
    Najjar, Yousef S. H.
    Sadeq, Jawad
    JOURNAL OF ENERGY ENGINEERING, 2017, 143 (02)
  • [2] Polynomial Expressions for the Thermal Efficiency of the Parabolic Trough Solar Collector
    Bellos, Evangelos
    Tzivanidis, Christos
    APPLIED SCIENCES-BASEL, 2020, 10 (19): : 1 - 23
  • [3] Thermal efficiency improvement of a solar desalination process by parabolic trough collector
    Randha, Bellatreche
    Maamar, Ouali
    Mourad, Balistrou
    Djilali, Tassalit
    WATER SUPPLY, 2021, 21 (07) : 3698 - 3709
  • [4] Modeling and Numerical Simulation of a Parabolic Trough Solar Collector Connected to a Solar Tracker
    Sebbar, E. H.
    Labtira, A.
    Hmimou, A.
    El Rhafiki, T.
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2024, 16 (10)
  • [5] Optical simulation of a parabolic solar trough collector
    Grena, Roberto
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2010, 29 (01) : 19 - 36
  • [6] Performance simulation of a parabolic trough solar collector
    Huang, Weidong
    Hu, Peng
    Chen, Zeshao
    SOLAR ENERGY, 2012, 86 (02) : 746 - 755
  • [7] Design of Parabolic Trough Solar Collector (PTC) and Numerical Simulation for Improving the Efficiency
    Hassanein, A. A. M.
    Qiu Ling
    ADVANCES IN ENERGY SCIENCE AND TECHNOLOGY, PTS 1-4, 2013, 291-294 : 53 - +
  • [8] Numerical simulation and optimization of parabolic trough cavity solar collector system
    槽式腔体太阳能集热系统特性数值模拟及优化
    Li, Ming (lmllldy@126.com), 2018, Science Press (39):
  • [9] Modeling and performance evaluation of parabolic trough solar collector desalination system
    Arun, C. A.
    Sreekumar, P. C.
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (01) : 780 - 788
  • [10] Study on the Collection Efficiency of Parabolic Trough Solar Collector
    Xu, Chengmu
    Li, Ming
    Ji, Xu
    Chen, Fei
    2013 INTERNATIONAL CONFERENCE ON MATERIALS FOR RENEWABLE ENERGY AND ENVIRONMENT (ICMREE), VOLS 1-3, 2013, : 1 - 7