THE YAMABE EQUIVARIANT PROBLEM

被引:0
|
作者
HEBEY, E
VAUGON, M
机构
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1991年 / 312卷 / 11期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The resolution of the Yamabe conjecture asserts that every compact riemannian manifold admits a conformal metric of constant scalar curvature. We show that it is possible to extend the information as we can require a control on its isometry group.
引用
收藏
页码:863 / 866
页数:4
相关论文
共 50 条
  • [31] On the Chern-Yamabe problem
    Angella, Daniele
    Calamai, Simone
    Spotti, Cristiano
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (03) : 645 - 677
  • [32] THE YAMABE PROBLEM ON MANIFOLDS WITH BOUNDARY
    ESCOBAR, JF
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1992, 35 (01) : 21 - 84
  • [33] The Yamabe problem on stratified spaces
    Kazuo Akutagawa
    Gilles Carron
    Rafe Mazzeo
    Geometric and Functional Analysis, 2014, 24 : 1039 - 1079
  • [34] Multiple solutions to the Yamabe problem
    Egorov, Yu. V.
    Il'yasov, Ya. Sh.
    DOKLADY MATHEMATICS, 2006, 74 (01) : 484 - 486
  • [35] About the Lorentzian Yamabe problem
    Ginoux, Nicolas
    GEOMETRIAE DEDICATA, 2015, 174 (01) : 287 - 309
  • [36] YAMABE PROBLEM ON SCALAR CURVATURE
    AUBIN, T
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (11): : 721 - 724
  • [37] Compactness of solutions to the Yamabe problem
    Li, YY
    Zhang, L
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (09) : 693 - 695
  • [38] The S1-Equivariant Yamabe Invariant of 3-Manifolds
    Ammann, Bernd
    Madani, Farid
    Pilca, Mihaela
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (20) : 6310 - 6328
  • [39] On perturbations of the fractional Yamabe problem
    Woocheol Choi
    Seunghyeok Kim
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [40] The mixed Yamabe problem for foliations
    Rovenski, Vladimir
    Zelenko, Leonid
    EUROPEAN JOURNAL OF MATHEMATICS, 2015, 1 (03) : 503 - 533