THE YAMABE EQUIVARIANT PROBLEM

被引:0
|
作者
HEBEY, E
VAUGON, M
机构
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1991年 / 312卷 / 11期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The resolution of the Yamabe conjecture asserts that every compact riemannian manifold admits a conformal metric of constant scalar curvature. We show that it is possible to extend the information as we can require a control on its isometry group.
引用
收藏
页码:863 / 866
页数:4
相关论文
共 50 条
  • [21] A COMPACTNESS THEOREM FOR THE YAMABE PROBLEM
    Khuri, M. A.
    Marques, F. C.
    Schoen, R. M.
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 81 (01) : 143 - 196
  • [22] Multiple solutions to the Yamabe problem
    Yu. V. Egorov
    Ya. Sh. Il’yasov
    Doklady Mathematics, 2006, 74
  • [23] REGULARITY FOR THE SINGULAR YAMABE PROBLEM
    MAZZEO, R
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (04) : 1277 - 1299
  • [24] Kodaira dimension and the Yamabe problem
    LeBrun, C
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1999, 7 (01) : 133 - 156
  • [25] The Yamabe Problem for Distributional Curvature
    Huaiyu Zhang
    The Journal of Geometric Analysis, 2023, 33
  • [26] About the Lorentzian Yamabe problem
    Nicolas Ginoux
    Geometriae Dedicata, 2015, 174 : 287 - 309
  • [27] Chern-Yamabe problem and Chern-Yamabe soliton
    Ho, Pak Tung
    Shin, Jinwoo
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (03)
  • [28] Yamabe Problem for Kropina Metrics
    Behzad Najafi
    Negin Youseflavi
    Akbar Tayebi
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 323 - 333
  • [29] On a fully nonlinear Yamabe problem
    Ge, Yuxin
    Wang, Guofang
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2006, 39 (04): : 569 - 598
  • [30] Yamabe Problem for Kropina Metrics
    Najafi, Behzad
    Youseflavi, Negin
    Tayebi, Akbar
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (SUPPL 1) : 323 - 333