SOLITON SOLUTION OF GENERALIZED 2D BOUSSINESQ EQUATION WITH QUADRATIC AND CUBIC NONLINEARITY

被引:2
|
作者
MATSUKAWA, M
WATANABE, S
TANACA, H
机构
关键词
D O I
10.1143/JPSJ.58.827
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:827 / 830
页数:4
相关论文
共 50 条
  • [31] Bifurcations and exact soliton solutions for generalized Dullin–Gottwald–Holm equation with cubic power law nonlinearity
    Deniu Yang
    Quanfu Lou
    Juan Zhang
    The European Physical Journal Plus, 137
  • [32] Approximate Analytical Solution of the Generalized Kolmogorov-Petrovsky-Piskunov Equation with Cubic Nonlinearity
    Wei-guo ZHANG
    Xie-kui HU
    Xing-qian LING
    Wen-xia LI
    ActaMathematicaeApplicataeSinica, 2023, 39 (02) : 424 - 449
  • [33] Analytical solution of differential equation with cubic nonlinearity
    Inkhireeva, Tatyana
    Kozlovskikh, Alexander
    PROCEEDINGS OF THE 2016 CONFERENCE ON INFORMATION TECHNOLOGIES IN SCIENCE, MANAGEMENT, SOCIAL SPHERE AND MEDICINE (ITSMSSM), 2016, 51 : 227 - 231
  • [34] Approximate Analytical Solution of the Generalized Kolmogorov-Petrovsky-Piskunov Equation with Cubic Nonlinearity
    Zhang, Wei-guo
    Hu, Xie-kui
    Ling, Xing-qian
    Li, Wen-xia
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (02): : 424 - 449
  • [35] Approximate solution to the generalized radial Boussinesq equation
    Pratt P.A.
    Telyakovskiy A.S.
    Advances in Water Resources, 2022, 166
  • [36] Approximate Analytical Solution of the Generalized Kolmogorov-Petrovsky-Piskunov Equation with Cubic Nonlinearity
    Wei-guo Zhang
    Xie-kui Hu
    Xing-qian Ling
    Wen-xia Li
    Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 424 - 449
  • [37] GENERALIZED QUADRATIC MAPPINGS IN 2d VARIABLES
    Cho, Yeol Je
    Lee, Sang Han
    Park, Choonkil
    KOREAN JOURNAL OF MATHEMATICS, 2011, 19 (01): : 17 - 24
  • [38] Blow-up scenario for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity
    Dong, Xiaofang
    APPLICABLE ANALYSIS, 2021, 100 (06) : 1180 - 1197
  • [39] Optical soliton perturbation with quadratic-cubic nonlinearity by traveling wave hypothesis
    Biswas, Anjan, 2017, National Institute of Optoelectronics (11): : 9 - 10
  • [40] Optical soliton perturbation with quadratic-cubic nonlinearity by Adomian decomposition method
    Asma, Mir
    Othman, W. A. M.
    Wong, B. R.
    Biswas, Anjan
    OPTIK, 2018, 164 : 632 - 641