GENERALIZED QUADRATIC MAPPINGS IN 2d VARIABLES

被引:0
|
作者
Cho, Yeol Je [1 ,2 ]
Lee, Sang Han [3 ]
Park, Choonkil [4 ]
机构
[1] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[2] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
[3] Chungbuk Prov Univ Sci & Technol, Dept Cultural Studies, Okcheon 373807, South Korea
[4] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 133791, South Korea
来源
KOREAN JOURNAL OF MATHEMATICS | 2011年 / 19卷 / 01期
关键词
Hyers-Ulam stability; quadratic mapping; functional equation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X, Y be vector spaces. It is shown that if an even mapping f : X -> Y satisfies f(0) = 0, and 2(C-2d-2(d-1) -(2d-2) C-d)f (Sigma C-2d(j=1)d)f (Sigma(2d)(j=1) x(j)) + Sigma(tau(j)=0,1,Sigma j=12d tau(j) = d) f(Sigma(2d)(j=1) (-1)(tau(j))x(j)) = 2(C-2d-1(d) + C-2d-2(d-1) -C-2d-2(d)) Sigma(2d)(j=1) f(x(j)) for all x(1) , ... , x(2d) is an element of X, then the even mapping f : X -> Y is quadratic. Furthermore, we prove the Hyers-Ulam stability of the above functional equation in Banach spaces.
引用
收藏
页码:17 / 24
页数:8
相关论文
共 50 条