GENERALIZED QUADRATIC MAPPINGS IN 2d VARIABLES

被引:0
|
作者
Cho, Yeol Je [1 ,2 ]
Lee, Sang Han [3 ]
Park, Choonkil [4 ]
机构
[1] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[2] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
[3] Chungbuk Prov Univ Sci & Technol, Dept Cultural Studies, Okcheon 373807, South Korea
[4] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 133791, South Korea
来源
KOREAN JOURNAL OF MATHEMATICS | 2011年 / 19卷 / 01期
关键词
Hyers-Ulam stability; quadratic mapping; functional equation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X, Y be vector spaces. It is shown that if an even mapping f : X -> Y satisfies f(0) = 0, and 2(C-2d-2(d-1) -(2d-2) C-d)f (Sigma C-2d(j=1)d)f (Sigma(2d)(j=1) x(j)) + Sigma(tau(j)=0,1,Sigma j=12d tau(j) = d) f(Sigma(2d)(j=1) (-1)(tau(j))x(j)) = 2(C-2d-1(d) + C-2d-2(d-1) -C-2d-2(d)) Sigma(2d)(j=1) f(x(j)) for all x(1) , ... , x(2d) is an element of X, then the even mapping f : X -> Y is quadratic. Furthermore, we prove the Hyers-Ulam stability of the above functional equation in Banach spaces.
引用
收藏
页码:17 / 24
页数:8
相关论文
共 50 条
  • [21] 2d gauge theories and generalized geometry
    Kotov, Alexei
    Salnikov, Vladimir
    Strobl, Thomas
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08):
  • [22] Tailoring the Generalized 2D Airy Beam
    Zheng, Junpeng
    Zhao, Ruhao
    Zhang, Cong
    Xiang, Meng
    Zhou, Gai
    Xu, Yi
    Fu, Songnian
    Qin, Yuwen
    IEEE PHOTONICS JOURNAL, 2024, 16 (02): : 1 - 6
  • [23] 2d gauge theories and generalized geometry
    Alexei Kotov
    Vladimir Salnikov
    Thomas Strobl
    Journal of High Energy Physics, 2014
  • [24] Generalized 2D principal component analysis
    Kong, H
    Li, XC
    Wang, L
    Teoh, EK
    Wang, JG
    Venkateswarlu, R
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 108 - 113
  • [26] HAMILTONIAN METHOD AND INVARIANT SEARCH FOR 2D QUADRATIC SYSTEMS
    CAIRO, L
    FEIX, MR
    HUA, D
    BOUQUET, S
    DEWISME, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (17): : 4371 - 4386
  • [27] On the generalized Hyers-Ulam stability of multi-quadratic mappings
    Cieplinski, Krzysztof
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (09) : 3418 - 3426
  • [28] Spatial solitons in quadratic 2D nonlinear photonic crystals
    Gallo, Katia
    Pasquazi, Alessia
    Stivala, Salvatore
    Assanto, Gaetano
    ICTON 2007: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, VOL 2, 2007, : 170 - +
  • [29] Fixed points and generalized stability for quadratic and quartic mappings in C*-algebras
    Gordji, M. E.
    Khodaei, H.
    Rassias, Th. M.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2015, 17 (04) : 703 - 715
  • [30] Classification of ξ(s)-Quadratic Stochastic Operators on 2D simplex
    Mukhamedov, Farrukh
    Saburov, Mansoor
    Qaralleh, Izzat
    INTERNATIONAL CONFERENCE ON ADVANCEMENT IN SCIENCE AND TECHNOLOGY 2012 (ICAST): CONTEMPORARY MATHEMATICS, MATHEMATICAL PHYSICS AND THEIR APPLICATIONS, 2013, 435