STRUCTURE FACTOR OF DETERMINISTIC FRACTALS WITH ROTATIONS

被引:6
|
作者
Dettmann, C. P. [1 ]
Frankel, N. E. [1 ]
机构
[1] Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia
关键词
D O I
10.1142/S0218348X93000265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a recursion relation for the Fourier transform of any self-similar multifractal mass distribution. This is then used to find sufficient conditions under which S(k) negated right arrow 0 as vertical bar k vertical bar -> infinity. Among two-dimensional distributions for which the similarity transformations contain 2 pi/n rotations, it is found that for values of 72 equal to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18 and 30, distributions may be constructed satisfying the above condition. The possible scaling factors in the similarity transformations are strongly constrained by the value of n. In three dimensions, the equivalent condition is that all rotations/reflections are elements of a finite group, together with similar constraints on the scaling factors.
引用
收藏
页码:253 / 261
页数:9
相关论文
共 50 条
  • [41] ON THE STRUCTURE OF SELF-SIMILAR FRACTALS
    MATTILA, P
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1982, 7 (02): : 189 - 195
  • [42] RESISTANCE SCALING FACTOR OF THE PILLOW AND FRACTALINA FRACTALS
    Ignatowich, Michael J.
    Kelleher, Daniel J.
    Maloney, Catherine E.
    Miller, David J.
    Serhiyenko, Khrystyna
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2015, 23 (02)
  • [43] Local Minima and Factor Rotations in Exploratory Factor Analysis
    Nguyen, Hoang, V
    Waller, Niels G.
    PSYCHOLOGICAL METHODS, 2023, 28 (05) : 1122 - 1141
  • [44] On monoculture and the structure of crop rotations
    Hennessy, David A.
    AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 2006, 88 (04) : 900 - 914
  • [45] Structure and Rotations of the Hoyle State
    Epelbaum, Evgeny
    Krebs, Hermann
    Laehde, Timo A.
    Lee, Dean
    Meissner, Ulf-G.
    PHYSICAL REVIEW LETTERS, 2012, 109 (25)
  • [46] RENORMALIZATION OF 1ST-PASSAGE TIMES FOR RANDOM-WALKS ON DETERMINISTIC FRACTALS
    VANDENBROECK, C
    PHYSICAL REVIEW A, 1989, 40 (12) : 7334 - 7345
  • [47] Deterministic fractals: Extracting additional information from small-angle scattering data
    Cherny, A. Yu.
    Anitas, E. M.
    Osipov, V. A.
    Kuklin, A. I.
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [48] Fractals and BaTiO3-ceramics structure
    Faculty of Electronic Engineering, Nis, Yugoslavia
    Key Eng Mat, Pt 2 (1060-1063):
  • [49] FRACTALS AND THE FRACTAL STRUCTURE OF METAL FRACTURE SURFACES
    MANDELBROT, BB
    JOURNAL OF METALS, 1983, 35 (08): : A36 - A36
  • [50] Fractals for Internet of Things Network Structure Planning
    Paramonov, Alexander
    Tonkikh, Evgeny
    Muthanna, Ammar
    Elgendy, Ibrahim A.
    Koucheryavy, Andrey
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY AND PRIVACY, 2022, 16 (01)