STRUCTURE FACTOR OF DETERMINISTIC FRACTALS WITH ROTATIONS

被引:6
|
作者
Dettmann, C. P. [1 ]
Frankel, N. E. [1 ]
机构
[1] Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia
关键词
D O I
10.1142/S0218348X93000265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a recursion relation for the Fourier transform of any self-similar multifractal mass distribution. This is then used to find sufficient conditions under which S(k) negated right arrow 0 as vertical bar k vertical bar -> infinity. Among two-dimensional distributions for which the similarity transformations contain 2 pi/n rotations, it is found that for values of 72 equal to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18 and 30, distributions may be constructed satisfying the above condition. The possible scaling factors in the similarity transformations are strongly constrained by the value of n. In three dimensions, the equivalent condition is that all rotations/reflections are elements of a finite group, together with similar constraints on the scaling factors.
引用
收藏
页码:253 / 261
页数:9
相关论文
共 50 条
  • [21] COMPLEX FRACTAL DIMENSIONS AND RANDOM-WALKS ON DETERMINISTIC FRACTALS
    KIM, Y
    PARK, DK
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1993, 26 : S419 - S422
  • [22] TorMentor: Deterministic dynamic-path, data augmentations with fractals
    Nicolaou, Anguelos
    Christlein, Vincent
    Riba, Edgar
    Shi, Jian
    Vogeler, Georg
    Seuret, Mathias
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 2706 - 2710
  • [23] DIFFERENT TYPES OF SELF-AVOIDING WALKS ON DETERMINISTIC FRACTALS
    SHUSSMAN, Y
    AHARONY, A
    JOURNAL OF STATISTICAL PHYSICS, 1994, 77 (3-4) : 545 - 563
  • [24] Piecewise deterministic quantum dynamics and quantum fractals on the Poincare disk
    Jadczyk, A
    REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (01) : 81 - 92
  • [25] Fractals in ceramic structure
    Mitic, VV
    Kocic, LM
    Mitrovic, IZ
    ADVANCED SCIENCE AND TECHNOLOGY OF SINTERING, 1999, : 397 - 402
  • [26] THE STRUCTURE OF DETERMINISTIC MASS, SURFACE AND MULTI-PHASE FRACTALS FROM SMALL-ANGLE SCATTERING DATA
    Cherny, A. Yu.
    Anitas, E. M.
    Osipov, V. A.
    Kuklin, A. I.
    ROMANIAN JOURNAL OF PHYSICS, 2015, 60 (5-6): : 658 - 663
  • [27] First-passage time, survival probability and propagator on deterministic fractals
    Yuste, SB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (24): : 7027 - 7038
  • [28] Quenched Averages for Self-Avoiding Walks and Polygons on Deterministic Fractals
    Deepak Sumedha
    Journal of Statistical Physics, 2006, 125 : 55 - 76
  • [29] First-passage time, survival probability and propagator on deterministic fractals
    Yuste, S. B.
    Journal of Physics A: Mathematical and General, 1996,
  • [30] TRANSIENT A+B-]0 REACTION ON FRACTALS - STOCHASTIC AND DETERMINISTIC ASPECTS
    ZUMOFEN, G
    KLAFTER, J
    BLUMEN, A
    JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (5-6) : 1015 - 1023