STRUCTURE FACTOR OF DETERMINISTIC FRACTALS WITH ROTATIONS

被引:6
|
作者
Dettmann, C. P. [1 ]
Frankel, N. E. [1 ]
机构
[1] Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia
关键词
D O I
10.1142/S0218348X93000265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a recursion relation for the Fourier transform of any self-similar multifractal mass distribution. This is then used to find sufficient conditions under which S(k) negated right arrow 0 as vertical bar k vertical bar -> infinity. Among two-dimensional distributions for which the similarity transformations contain 2 pi/n rotations, it is found that for values of 72 equal to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18 and 30, distributions may be constructed satisfying the above condition. The possible scaling factors in the similarity transformations are strongly constrained by the value of n. In three dimensions, the equivalent condition is that all rotations/reflections are elements of a finite group, together with similar constraints on the scaling factors.
引用
收藏
页码:253 / 261
页数:9
相关论文
共 50 条
  • [1] Deterministic fractals
    Ficker, T
    Benesovsky, P
    EUROPEAN JOURNAL OF PHYSICS, 2002, 23 (04) : 403 - 408
  • [2] DYNAMIC STRUCTURE FACTOR OF FRACTALS
    ENTINWOHLMAN, O
    SIVAN, U
    BLUMENFELD, R
    MEIR, Y
    PHYSICA D, 1989, 38 (1-3): : 93 - 97
  • [3] Dynamic Structure Factor of Vibrating Fractals
    Reuveni, Shlomi
    Klafter, Joseph
    Granek, Rony
    PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [4] RENDERING ALGORITHMS FOR DETERMINISTIC FRACTALS
    MONRO, DM
    DUDBRIDGE, F
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1995, 15 (01) : 32 - 41
  • [5] Spin waves in deterministic fractals
    Monceau, Pascal
    Levy, Jean-Claude Serge
    PHYSICS LETTERS A, 2010, 374 (17-18) : 1872 - 1879
  • [6] SCATTERING STRUCTURE FACTOR FROM FAT FRACTALS
    Anitas, E. M.
    ROMANIAN JOURNAL OF PHYSICS, 2015, 60 (5-6): : 647 - 652
  • [7] CAPILLARY DISPLACEMENT ON DETERMINISTIC AND RANDOM FRACTALS
    Paredes, R.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1993, 1 (04) : 887 - 893
  • [8] DYNAMIC STRUCTURE FACTOR OF A DETERMINISTIC FRACTAL
    SIVAN, U
    BLUMENFELD, R
    MEIR, Y
    ENTINWOHLMAN, O
    EUROPHYSICS LETTERS, 1988, 7 (03): : 249 - 253
  • [9] Diffusion in deterministic fractals: a model for polymer electrolytes
    Maitra, M
    Mal, D
    Dasgupta, R
    Tarafdar, S
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 346 (1-2) : 191 - 199