IDENTITY REPRODUCING MULTIVARIATE NONPARAMETRIC REGRESSION

被引:8
|
作者
MULLER, HG
SONG, KS
机构
关键词
BIAS IMPROVEMENT; CURVE ESTIMATION; IDENTITY REPRODUCING TRANSFORMATION; KERNEL ESTIMATOR; RANDOM DESIGN; SMOOTHING WEAK CONVERGENCE;
D O I
10.1006/jmva.1993.1059
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonparametric kernel regression estimators of the Nadaraya-Watson type are known to have an undesirable bias behavior. We propose a general technique to improve the bias of any given multivariate nonparametric regression estimator based on the requirement that the identity function should be reproduced, which is achieved by means of an identity reproducing transformation of the predictor variable. The asymptotic distribution of the identity reproducing version of the Nadaraya-Watson estimator is derived and is compared with that of the untransformed Nadaraya-Watson estimator. It is demonstrated by means of a Monte Carlo study that the asymptotic improvements are noticeable already for small sample sizes. © 1993 Academic Press, Inc.
引用
收藏
页码:237 / 253
页数:17
相关论文
共 50 条
  • [21] A nonparametric concurrent regression model with multivariate functional inputs
    Zhai, Yutong
    Wang, Zhanfeng
    Wang, Yuedong
    STATISTICS AND ITS INTERFACE, 2024, 17 (01) : 69 - 78
  • [22] Nonparametric Regression Estimation for Multivariate Null Recurrent Processes
    Cai, Biqing
    Tjostheim, Dag
    ECONOMETRICS, 2015, 3 (02) : 265 - 288
  • [23] Comparison of Principal Component Regression and Nonparametric Multivariate Trend Test for Multivariate Linkage
    Kim, Su-Young
    Song, Hae-Hiang
    KOREAN JOURNAL OF APPLIED STATISTICS, 2008, 21 (01) : 19 - 33
  • [24] The reproducing kernel Hilbert space approach in nonparametric regression problems with correlated observations
    Benelmadani, D.
    Benhenni, K.
    Louhichi, S.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (06) : 1479 - 1500
  • [25] The reproducing kernel Hilbert space approach in nonparametric regression problems with correlated observations
    D. Benelmadani
    K. Benhenni
    S. Louhichi
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 1479 - 1500
  • [26] On the nonparametric classification and regression methods for multivariate EAS data analysis
    Chilingarian, A
    TerAntonyan, S
    Vardanyan, A
    Gils, HJ
    Knapp, J
    Rebel, H
    Roth, M
    NUCLEAR PHYSICS B, 1997, : 237 - 239
  • [27] Multivariate nonparametric regression by least squares Jacobi polynomials approximations
    BenSaber, Asma
    Dabo-Niang, Sophie
    Karoui, Abderrazek
    arXiv, 2022,
  • [28] Improved nonparametric estimation of location vectors in multivariate regression models
    Ahmed, SE
    Saleh, AKME
    JOURNAL OF NONPARAMETRIC STATISTICS, 1999, 11 (1-3) : 51 - 78
  • [29] Asymptotics of estimators for nonparametric multivariate regression models with long memory
    WANG Li-hong
    WANG Ming
    Applied Mathematics:A Journal of Chinese Universities, 2019, 34 (04) : 403 - 422
  • [30] Data-driven model choice in multivariate nonparametric regression
    Vieu, P
    STATISTICS, 2002, 36 (03) : 231 - 246