A nonparametric concurrent regression model with multivariate functional inputs

被引:0
|
作者
Zhai, Yutong [1 ]
Wang, Zhanfeng [1 ]
Wang, Yuedong [2 ]
机构
[1] Univ Sci & Technol China, Management Sch, Dept Stat & Finance, Hefei, Peoples R China
[2] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA USA
关键词
Function-on-function regression; Gaussian kernel; Reproducing kernel Hilbert space; Smoothing spline; FERTILITY; MORTALITY;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Regression models with functional responses and covariates have attracted extensive research. Nevertheless, there is no existing method for the situation where the functional covariates are bivariate functions with one of the variables in common with the response function. In this article, we propose a nonparametric function-on-function regression method. We construct model spaces using a Gaussian kernel function and smoothing spline ANOVA decomposition. We estimate the nonparametric function using penalized likelihood and study properties of the Gaussian kernel function and the convergence rate of the proposed estimation method. We evaluate the proposed methods using simulations and illustrate them using two real data examples.
引用
收藏
页码:69 / 78
页数:10
相关论文
共 50 条