3-DIMENSIONAL RAYLEIGH-TAYLOR INSTABILITY OF SPHERICAL SYSTEMS

被引:60
|
作者
SAKAGAMI, H [1 ]
NISHIHARA, K [1 ]
机构
[1] OSAKA UNIV, INST LASER ENGN, SUITA, OSAKA 565, JAPAN
关键词
D O I
10.1103/PhysRevLett.65.432
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A fully three-dimensional Rayleigh-Taylor instability of the pusher-fuel contact surface in a spherically stagnating system is investigated with the use of a new three-dimensional fluid code impact - 3d. Linear growth rates in the simulations agree quite well with analytical values which include spherical-geometry effects. Saturation amplitudes of the exponential growth and free-fall speed following the saturation are found to be, respectively, larger and faster than those of 2D simulations. Nonlinear bubble-spike structures are also studied in detail. © 1990 The American Physical Society.
引用
收藏
页码:432 / 435
页数:4
相关论文
共 50 条
  • [41] On the dynamical Rayleigh-Taylor instability
    Hwang, HJ
    Guo, Y
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 167 (03) : 235 - 253
  • [42] Granular Rayleigh-Taylor Instability
    Vinningland, Jan Ludvig
    Johnsen, Oistein
    Flekkoy, Eirik G.
    Toussaint, Renaud
    Maloy, Knut Jorgen
    TRAFFIC AND GRANULAR FLOW '07, 2009, : 577 - +
  • [43] On the Dynamical Rayleigh-Taylor Instability
    Hyung Ju Hwang
    Yan Guo
    Archive for Rational Mechanics and Analysis, 2003, 167 : 235 - 253
  • [44] THEORY OF THE RAYLEIGH-TAYLOR INSTABILITY
    KULL, HJ
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1991, 206 (05): : 197 - 325
  • [45] Confined Rayleigh-Taylor instability
    Alqatari, Samar
    Videbaek, Thomas E.
    Nagel, Sidney R.
    Hosoi, Anette
    Bischofberger, Irmgard
    PHYSICAL REVIEW FLUIDS, 2022, 7 (11)
  • [46] Granular Rayleigh-Taylor instability
    Vinningland, Jan Ludvig
    Johnsen, Oistein
    Flekkoy, Eirik G.
    Toussaint, Renaud
    Maloy, Knut Jorgen
    POWDERS AND GRAINS 2009, 2009, 1145 : 1067 - +
  • [47] AN OVERVIEW OF RAYLEIGH-TAYLOR INSTABILITY
    SHARP, DH
    PHYSICA D, 1984, 12 (1-3): : 3 - 18
  • [48] MODEL OF RAYLEIGH-TAYLOR INSTABILITY
    AREF, H
    TRYGGVASON, G
    PHYSICAL REVIEW LETTERS, 1989, 62 (07) : 749 - 752
  • [49] On saturation of Rayleigh-Taylor instability
    Frenkel, AL
    Halpern, D
    IUTAM SYMPOSIUM ON NONLINEAR WAVES IN MULTI-PHASE FLOW, 2000, 57 : 69 - 79
  • [50] COMPRESSIBLE RAYLEIGH-TAYLOR INSTABILITY
    BAKER, L
    PHYSICS OF FLUIDS, 1983, 26 (04) : 950 - 952