3-DIMENSIONAL RAYLEIGH-TAYLOR INSTABILITY OF SPHERICAL SYSTEMS

被引:60
|
作者
SAKAGAMI, H [1 ]
NISHIHARA, K [1 ]
机构
[1] OSAKA UNIV, INST LASER ENGN, SUITA, OSAKA 565, JAPAN
关键词
D O I
10.1103/PhysRevLett.65.432
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A fully three-dimensional Rayleigh-Taylor instability of the pusher-fuel contact surface in a spherically stagnating system is investigated with the use of a new three-dimensional fluid code impact - 3d. Linear growth rates in the simulations agree quite well with analytical values which include spherical-geometry effects. Saturation amplitudes of the exponential growth and free-fall speed following the saturation are found to be, respectively, larger and faster than those of 2D simulations. Nonlinear bubble-spike structures are also studied in detail. © 1990 The American Physical Society.
引用
收藏
页码:432 / 435
页数:4
相关论文
共 50 条
  • [21] The three-dimensional weakly nonlinear Rayleigh-Taylor instability in spherical geometry
    Zhang, J.
    Wang, L. F.
    Wu, J. F.
    Ye, W. H.
    Zou, S. Y.
    Ding, Y. K.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2020, 27 (02)
  • [22] Rayleigh-Taylor instability at spherical interfaces of incompressible fluids
    Guo, Hong-Yu
    Wang, Li-Feng
    Ye, Wen-Hua
    Wu, Jun-Feng
    Li, Ying-Jun
    Zhang, Wei-Yan
    CHINESE PHYSICS B, 2018, 27 (02)
  • [23] Multiphase effects on spherical Rayleigh-Taylor interfacial instability
    Mankbadi, Mina R.
    Balachandar, S.
    PHYSICS OF FLUIDS, 2014, 26 (02)
  • [24] On the three-dimensional Rayleigh-Taylor instability
    He, XY
    Zhang, RY
    Chen, SY
    Doolen, GD
    PHYSICS OF FLUIDS, 1999, 11 (05) : 1143 - 1152
  • [25] RAYLEIGH-TAYLOR INSTABILITY
    PLESSET, MS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1095 - 1095
  • [26] RAYLEIGH-TAYLOR INSTABILITY
    BABENKO, KI
    PETROVICH, VI
    DOKLADY AKADEMII NAUK SSSR, 1979, 245 (03): : 551 - 554
  • [27] The Rayleigh-Taylor instability
    Piriz, A. R.
    Cortazar, O. D.
    Lopez Cela, J. J.
    Tahir, N. A.
    AMERICAN JOURNAL OF PHYSICS, 2006, 74 (12) : 1095 - 1098
  • [28] Rayleigh-Taylor instability in the deceleration phase of spherical implosion experiments
    Smalyuk, VA
    Delettrez, JA
    Goncharov, VN
    Marshall, FJ
    Meyerhofer, DD
    Regan, SP
    Sangster, TC
    Town, RPJ
    Yaakobi, B
    PHYSICS OF PLASMAS, 2002, 9 (06) : 2738 - 2744
  • [29] Viscous Rayleigh-Taylor instability at a dynamic interface in spherical geometry
    Wang, Y. W.
    Sun, Y. B.
    Wang, C.
    Xiao, Y.
    Zeng, R. H.
    PHYSICS OF FLUIDS, 2024, 36 (08)
  • [30] Simulation of the Weakly Nonlinear Rayleigh-Taylor Instability in Spherical Geometry
    Yang, Yun-Peng
    Zhang, Jing
    Li, Zhi-Yuan
    Wang, Li-Feng
    Wu, Jun-Feng
    Ye, Wen-Hua
    He, Xian-Tu
    CHINESE PHYSICS LETTERS, 2020, 37 (05)