PARAMETER-ESTIMATION OF STATE-SPACE MODELS BY RECURRENT NEURAL NETWORKS

被引:13
|
作者
RAOL, JR
机构
[1] Natl Aerospace Lab, Bangalore
来源
关键词
STATE SPACE MODELS; RECURRENT NEURAL NETWORKS; HOPFIELD NEURAL NETWORK;
D O I
10.1049/ip-cta:19951733
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Four variants of recurrent neural networks (RNNs) are studied. The similarities and contradistinction of these formulations are brought out from the view point of their applicability to parameter estimation in dynamic systems. The trajectory matching algorithms are also given. A recursive information processing scheme within the structure of Hopfield neural network for parameter estimation is presented. Numerical simulation results for nonrecursive and recursive schemes are given.
引用
收藏
页码:114 / 118
页数:5
相关论文
共 50 条
  • [21] Distributed and Recursive Parameter Estimation in Parametrized Linear State-Space Models
    Ram, S. Sundhar
    Veeravalli, Venugopal V.
    Nedic, Angelia
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (02) : 488 - 492
  • [22] State-space recurrent fuzzy neural networks for nonlinear system identification
    Yu, W
    NEURAL PROCESSING LETTERS, 2005, 22 (03) : 391 - 404
  • [23] Least-squares parameter estimation for state-space models with state equality constraints
    Ricco, Rodrigo A.
    Teixeira, Bruno O. S.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (01) : 1 - 13
  • [24] State-space estimation with uncertain models
    Sayed, AH
    Subramanian, A
    TOTAL LEAST SQUARES AND ERRORS-IN-VARIABLES MODELING: ANALYSIS, ALGORITHMS AND APPLICATIONS, 2002, : 191 - 202
  • [25] Approximate Smoothing and Parameter Estimation in High-Dimensional State-Space Models
    Finke, Axel
    Singh, Sumeetpal S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (22) : 5982 - 5994
  • [26] Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models
    Gao, Meng
    Zhang, Hui
    COMPUTERS & GEOSCIENCES, 2012, 44 : 70 - 77
  • [27] On simultaneous on-line state and parameter estimation in non-linear state-space models
    Tulsyan, Aditya
    Huang, Biao
    Gopaluni, R. Bhushan
    Forbes, J. Fraser
    JOURNAL OF PROCESS CONTROL, 2013, 23 (04) : 516 - 526
  • [28] Sensitivity models for nonlinear filters with application to recursive parameter estimation for nonlinear state-space models
    Bohn, C
    Unbehauen, H
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2001, 148 (02): : 137 - 145
  • [29] State-Space Representations of Deep Neural Networks
    Hauser, Michael
    Gunn, Sean
    Saab, Samer, Jr.
    Ray, Asok
    NEURAL COMPUTATION, 2019, 31 (03) : 538 - 554
  • [30] Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces
    Malik, Wasim Q.
    Hochberg, Leigh R.
    Donoghue, John P.
    Brown, Emery N.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (02) : 570 - 581