THE TRANSITION TO CHAOTIC ATTRACTORS WITH RIDDLED BASINS

被引:192
|
作者
OTT, E
ALEXANDER, JC
KAN, I
SOMMERER, JC
YORKE, JA
机构
[1] UNIV MARYLAND,INST SYST RES,PLASMA RES LAB,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,DEPT ELECT ENGN,COLLEGE PK,MD 20742
[3] UNIV MARYLAND,DEPT PHYS,COLLEGE PK,MD 20742
[4] JOHNS HOPKINS UNIV,APPL PHYS LAB,MS EISENHOWER RES CTR,LAUREL,MD 20723
[5] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLLEGE PK,MD 20742
[6] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
[7] GEORGE MASON UNIV,DEPT MATH,FAIRFAX,VA 22030
来源
PHYSICA D | 1994年 / 76卷 / 04期
关键词
D O I
10.1016/0167-2789(94)90047-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently it has been shown that there are chaotic attractors whose basins are such that any point in the basin has pieces of another attractor basin arbitrarily nearby (the basin is ''riddled'' with holes). Here we consider the dynamics near the transition to this situation as a parameter is varied. Using a simple analyzable model, we obtain the characteristic behaviors near this transition. Numerical tests on a more typical system are consistent with the conjecture that these results are universal for the class of systems considered.
引用
收藏
页码:384 / 410
页数:27
相关论文
共 50 条
  • [41] Tumors as chaotic attractors
    Nikolov, Svetoslav
    Wolkenhauer, Olaf
    Vera, Julio
    MOLECULAR BIOSYSTEMS, 2014, 10 (02) : 172 - 179
  • [42] STRANGE ATTRACTORS THAT ARE NOT CHAOTIC
    GREBOGI, C
    OTT, E
    PELIKAN, S
    YORKE, JA
    PHYSICA D, 1984, 13 (1-2): : 261 - 268
  • [43] THE DIMENSION OF CHAOTIC ATTRACTORS
    FARMER, JD
    OTT, E
    YORKE, JA
    PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) : 153 - 180
  • [44] The theory of chaotic attractors
    Morris, Dennis
    MATHEMATICAL GAZETTE, 2005, 89 (514): : 168 - +
  • [45] CHAOTIC ATTRACTORS IN CRISIS
    GREBOGI, C
    OTT, E
    YORKE, JA
    PHYSICAL REVIEW LETTERS, 1982, 48 (22) : 1507 - 1510
  • [47] ON AN EQUIVALENCE OF CHAOTIC ATTRACTORS
    KOCAREV, L
    KAPITANIAK, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (09): : L249 - L254
  • [48] ON INDECOMPOSABILITY IN CHAOTIC ATTRACTORS
    Boronski, Jan P.
    Oprocha, Piotr
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (08) : 3659 - 3670
  • [49] Transverse instability and riddled basins in a system of two coupled logistic maps
    Maistrenko, YL
    Maistrenko, VL
    Popovich, A
    Mosekilde, E
    PHYSICAL REVIEW E, 1998, 57 (03): : 2713 - 2724
  • [50] Generating chaotic attractors with multiple merged basins of attraction:: A switching piecewise-linear control approach
    Lü, JH
    Yu, XH
    Chen, GR
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2003, 50 (02) : 198 - 207