THE TRANSITION TO CHAOTIC ATTRACTORS WITH RIDDLED BASINS

被引:192
|
作者
OTT, E
ALEXANDER, JC
KAN, I
SOMMERER, JC
YORKE, JA
机构
[1] UNIV MARYLAND,INST SYST RES,PLASMA RES LAB,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,DEPT ELECT ENGN,COLLEGE PK,MD 20742
[3] UNIV MARYLAND,DEPT PHYS,COLLEGE PK,MD 20742
[4] JOHNS HOPKINS UNIV,APPL PHYS LAB,MS EISENHOWER RES CTR,LAUREL,MD 20723
[5] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLLEGE PK,MD 20742
[6] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
[7] GEORGE MASON UNIV,DEPT MATH,FAIRFAX,VA 22030
来源
PHYSICA D | 1994年 / 76卷 / 04期
关键词
D O I
10.1016/0167-2789(94)90047-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently it has been shown that there are chaotic attractors whose basins are such that any point in the basin has pieces of another attractor basin arbitrarily nearby (the basin is ''riddled'' with holes). Here we consider the dynamics near the transition to this situation as a parameter is varied. Using a simple analyzable model, we obtain the characteristic behaviors near this transition. Numerical tests on a more typical system are consistent with the conjecture that these results are universal for the class of systems considered.
引用
收藏
页码:384 / 410
页数:27
相关论文
共 50 条
  • [31] Graphical Structure of Attraction Basins of Hidden Chaotic Attractors: The Rabinovich-Fabrikant System
    Danca, Marius-F
    Bourke, Paul
    Kuznetsov, Nikolay
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (01):
  • [32] Basins of attractors of trajectories
    Sharkovsky, A. N.
    Sivak, A. G.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (02) : 159 - 163
  • [33] Riddled basins in a model for the Belousov-Zhabotinsky reaction
    Woltering, M
    Markus, M
    CHEMICAL PHYSICS LETTERS, 2000, 321 (5-6) : 473 - 478
  • [34] Riddled basins of the optimal states in learning dynamical systems
    Nakajima, H
    Ueda, Y
    PHYSICA D-NONLINEAR PHENOMENA, 1996, 99 (01) : 35 - 44
  • [35] BLOWOUT BIFURCATIONS - THE OCCURRENCE OF RIDDLED BASINS AND ON OFF INTERMITTENCY
    OTT, E
    SOMMERER, JC
    PHYSICS LETTERS A, 1994, 188 (01) : 39 - 47
  • [36] Riddled basins of attraction in systems exhibiting extreme events
    Saha, Arindam
    Feudel, Ulrike
    CHAOS, 2018, 28 (03)
  • [37] Riddled basins of attraction for synchronized type-I intermittency
    Manscher, M
    Nordahn, M
    Mosekilde, E
    Maistrenko, YL
    PHYSICS LETTERS A, 1998, 238 (06) : 358 - 364
  • [38] The occurrence of riddled basins and blowout bifurcations in a parametric nonlinear system
    Rabiee, M.
    Ghane, F. H.
    Zaj, M.
    Karimi, S.
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 435
  • [39] Riddled basins of attraction for synchronized type-@I intermittency
    Manscher, M.
    Nordahn, M.
    Mosekilde, E.
    Maistrenko, Yu. L.
    Physics Letters. Section A: General, Atomic and Solid State Physics, 238 (06):
  • [40] Attractors and basins of dynamical systems
    Denes, Attila
    Makay, Geza
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2011, (20) : 1 - 11