A learning scheme for a fuzzy k-NN rule

被引:75
|
作者
Jozwik, Adam [1 ]
机构
[1] Polish Acad Sci, Inst Biocybernet & Biomed Engn, PL-00818 Warsaw, Poland
关键词
NN rules; learning procedure; fuzzy decisions; probability of misclassification;
D O I
10.1016/0167-8655(83)90064-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The performance of a fuzzy k-NN rule depends on the number k and a fuzzy membership- array W[l, m(R)], where l and m(R) denote the number of classes and the number of elements in the reference set X-R respectively. The proposed learning procedure consists in iterative finding such k and W which minimize the error rate estimated by the 'leaving one out' method.
引用
收藏
页码:287 / 289
页数:3
相关论文
共 50 条
  • [31] Metric Learning by Directly Minimizing the k-NN Training Error
    Chernoff, Konstantin
    Loog, Marco
    Nielsen, Mads
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1265 - 1268
  • [32] Learning Efficient Anomaly Detectors from K-NN Graphs
    Qian, Jing
    Root, Jonathan
    Saligrama, Venkatesh
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 790 - 799
  • [33] Trajectory Clustering and k-NN for Robust Privacy Preserving k-NN Query Processing in GeoSpark
    Dritsas, Elias
    Kanavos, Andreas
    Trigka, Maria
    Vonitsanos, Gerasimos
    Sioutas, Spyros
    Tsakalidis, Athanasios
    ALGORITHMS, 2020, 13 (08)
  • [34] Moderating k-NN classifiers
    Alkoot, FM
    Kittler, J
    PATTERN ANALYSIS AND APPLICATIONS, 2002, 5 (03) : 326 - 332
  • [35] On k-NN method with preprocessing
    Suraj, Z
    Delinnata, P
    FUNDAMENTA INFORMATICAE, 2006, 69 (03) : 343 - 358
  • [36] Unsupervised Outlier detection algorithm based on k-NN and fuzzy logic
    Renan Velazquez-Gonzalez, J.
    Peregrina-Barreto, Hayde
    Fco Martinez-Trinidad, Jose
    2019 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2019), 2019,
  • [37] Neural implementation of fuzzy K-NN classification for seismic pattern recognition
    Huang, KY
    Yuan, YW
    ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 1588 - 1593
  • [38] Moderating k-NN Classifiers
    Fuad M. Alkoot
    Josef Kittler
    Pattern Analysis & Applications, 2002, 5 : 326 - 332
  • [39] Prediction of protein subcellular locations using fuzzy k-NN method
    Huang, Y
    Li, Y
    BIOINFORMATICS, 2004, 20 (01) : 21 - 28
  • [40] Active Learning Using Fuzzy k-NN for Cancer Classification from Microarray Gene Expression Data
    Halder, Anindya
    Dey, Samrat
    Kumar, Ansuman
    ADVANCES IN COMMUNICATION AND COMPUTING, 2015, 347 : 103 - 113