A learning scheme for a fuzzy k-NN rule

被引:75
|
作者
Jozwik, Adam [1 ]
机构
[1] Polish Acad Sci, Inst Biocybernet & Biomed Engn, PL-00818 Warsaw, Poland
关键词
NN rules; learning procedure; fuzzy decisions; probability of misclassification;
D O I
10.1016/0167-8655(83)90064-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The performance of a fuzzy k-NN rule depends on the number k and a fuzzy membership- array W[l, m(R)], where l and m(R) denote the number of classes and the number of elements in the reference set X-R respectively. The proposed learning procedure consists in iterative finding such k and W which minimize the error rate estimated by the 'leaving one out' method.
引用
收藏
页码:287 / 289
页数:3
相关论文
共 50 条
  • [11] Does linear combination outperform the k-NN rule?
    Liu, Ming
    Yuan, Baozong
    Chen, Jiangfeng
    Miao, Zhenjiang
    2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4, 2006, : 1742 - +
  • [12] Using Genetic Algorithm to Improve Fuzzy k-NN
    Zhang Juan
    Niu Yi
    He Wenbin
    2008 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, VOLS 1 AND 2, PROCEEDINGS, 2008, : 475 - +
  • [13] Improving k-NN by using fuzzy similarity functions
    Morell, C
    Bello, R
    Grau, R
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2004, 2004, 3315 : 708 - 716
  • [14] Two manufacturing applications of the fuzzy K-NN algorithm
    Liao, TW
    Li, DM
    FUZZY SETS AND SYSTEMS, 1997, 92 (03) : 289 - 303
  • [15] Optimization of K-NN by feature weight learning
    Shi, Q
    Lv, L
    Chen, H
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 2828 - 2831
  • [16] Connectionist learning of weights for k-NN retrieval
    Dhar, AR
    Khemani, D
    PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 1697 - 1700
  • [17] An evidence-theoretic k-NN rule with parameter optimization
    Zouhal, LM
    Denoeux, T
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 1998, 28 (02): : 263 - 271
  • [18] EXPONENTIAL POSTERIOR ERROR BOUND FOR THE k-NN DISCRIMINATION RULE
    陈希孺
    ScienceinChina,SerA., 1985, Ser.A.1985 (07) : 673 - 682
  • [19] EXPONENTIAL POSTERIOR ERROR BOUND FOR THE K-NN DISCRIMINATION RULE
    CHEN, XR
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1985, 28 (07): : 673 - 682
  • [20] EXPONENTIAL POSTERIOR ERROR BOUND FOR THE k-NN DISCRIMINATION RULE
    陈希孺
    Science China Mathematics, 1985, (07) : 673 - 682