CHRISTOFFEL FUNCTIONS AND FINITE MOMENT PROBLEMS

被引:10
|
作者
INGLESE, G
机构
[1] IAGA, CNR, I-50139 Firenze
关键词
D O I
10.1088/0266-5611/11/4/020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Christoffel functions are used here to approximate an unknown probability density u : [0, 1] --> R(+) whose first m moments mu(1),...,mu(m) only are available. We obtain a sequence u((m)) of estimators which (theoretically) converges to u. We test it in several numerical examples and compare u((m)) with the probability density which matches the given moments and minimizes the functional S-w(u) = - integral(0)(1) ln u dx/root x(1-x).
引用
收藏
页码:949 / 960
页数:12
相关论文
共 50 条
  • [1] On Moment Problems with Holonomic Functions
    Brehard, Florent
    Joldes, Mioara
    Lasserre, Jean-Bernard
    PROCEEDINGS OF THE 2019 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC '19), 2019, : 66 - 73
  • [2] MOMENT PROBLEMS AND ORTHOGONAL FUNCTIONS
    BULTHEEL, A
    GONZALEZVERA, P
    HENDRIKSEN, E
    NJASTAD, O
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 48 (1-2) : 49 - 68
  • [3] On generalized Christoffel functions
    Shi, Y. G.
    ACTA MATHEMATICA HUNGARICA, 2012, 135 (03) : 213 - 228
  • [4] GENERALIZED CHRISTOFFEL FUNCTIONS
    Joung, Haewon
    KOREAN JOURNAL OF MATHEMATICS, 2010, 18 (02): : 149 - 160
  • [5] Matrix Christoffel functions
    Durán, AJ
    Polo, B
    CONSTRUCTIVE APPROXIMATION, 2004, 20 (03) : 353 - 376
  • [6] Matrix Christoffel Functions
    Antonio J. Durán
    Beatriz Polo
    Constructive Approximation , 2004, 20 : 353 - 376
  • [7] On generalized Christoffel functions
    Ying Guang Shi
    Acta Mathematica Hungarica, 2012, 135 : 213 - 228
  • [8] FINITE POSITIVE-MOMENT PROBLEMS
    ROGOSINSKI, HP
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1968, 43 (172P): : 658 - +
  • [9] SOME MOMENT PROBLEMS IN A FINITE INTERVAL
    LEVIATAN, D
    CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (04): : 960 - &
  • [10] 2 MOMENT PROBLEMS FOR BOUNDED FUNCTIONS
    VERBLUNSKY, S
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1946, 42 (03): : 189 - 196