On generalized Christoffel functions

被引:3
|
作者
Shi, Y. G. [1 ]
机构
[1] Hunan Normal Univ, Minist Educ, Coll Math & Comp Sci, Key Lab High Performance Comp & Stochast Informat, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
orthogonal polynomial; generalized Christoffel function; generalized Jacobi weight;
D O I
10.1007/s10474-012-0204-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized Christoffel function lambda(p,q,n) (d mu; x) (0 <p < infinity 0 <= q < infinity) with respect to a measure d mu, on R is defined by lambda(p,q,n) (d mu; x) = inf(Q is an element of Pn-1,Q(x)=1)integral Q(t) vertical bar t - x vertical bar(q)d mu(t). The novelty of our definition is that it contains the factor vertical bar t - x vertical bar(q), which is of particular interest. Its properties are discussed and estimates are given. In particular, upper and lower bounds for generalized Christoffel functions with respect to generalized Jacobi weights are also provided.
引用
收藏
页码:213 / 228
页数:16
相关论文
共 50 条
  • [1] GENERALIZED CHRISTOFFEL FUNCTIONS
    Joung, Haewon
    KOREAN JOURNAL OF MATHEMATICS, 2010, 18 (02): : 149 - 160
  • [2] On generalized Christoffel functions
    Ying Guang Shi
    Acta Mathematica Hungarica, 2012, 135 : 213 - 228
  • [3] Generalized Christoffel Functions for Power Orthogonal Polynomials
    Tao, Xie
    Liang, Yan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (03): : 819 - 832
  • [4] Generalized Christoffel Functions for Power Orthogonal Polynomials
    Xie TAO
    Yan LIANG
    Acta Mathematicae Applicatae Sinica, 2014, (03) : 819 - 832
  • [5] Generalized Christoffel functions for power orthogonal polynomials
    Xie Tao
    Yan Liang
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 819 - 832
  • [6] Generalized Christoffel functions for Jacobi-exponential weights
    Shi, Y. G.
    ACTA MATHEMATICA HUNGARICA, 2013, 140 (1-2) : 71 - 89
  • [7] Generalized Christoffel functions for Jacobi-exponential weights
    Ying Guang Shi
    Acta Mathematica Hungarica, 2013, 140 : 71 - 89
  • [9] GENERALIZED JACOBI WEIGHTS, CHRISTOFFEL FUNCTIONS, AND ZEROS OF ORTHOGONAL POLYNOMIALS
    ERDELYI, T
    NEVAI, P
    JOURNAL OF APPROXIMATION THEORY, 1992, 69 (02) : 111 - 132
  • [10] GENERALIZED JACOBI WEIGHTS, CHRISTOFFEL FUNCTIONS, AND JACOBI-POLYNOMIALS
    NEVAI, P
    ERDELYI, T
    MAGNUS, AP
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (02) : 602 - 614