CHRISTOFFEL FUNCTIONS AND FINITE MOMENT PROBLEMS

被引:10
|
作者
INGLESE, G
机构
[1] IAGA, CNR, I-50139 Firenze
关键词
D O I
10.1088/0266-5611/11/4/020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Christoffel functions are used here to approximate an unknown probability density u : [0, 1] --> R(+) whose first m moments mu(1),...,mu(m) only are available. We obtain a sequence u((m)) of estimators which (theoretically) converges to u. We test it in several numerical examples and compare u((m)) with the probability density which matches the given moments and minimizes the functional S-w(u) = - integral(0)(1) ln u dx/root x(1-x).
引用
收藏
页码:949 / 960
页数:12
相关论文
共 50 条
  • [31] Asymptotics of Christoffel functions on arcs and curves
    Totik, Vilmos
    ADVANCES IN MATHEMATICS, 2014, 252 : 114 - 149
  • [32] Christoffel functions and universality on the boundary of the ball
    Kroo, A.
    Lubinsky, D. S.
    ACTA MATHEMATICA HUNGARICA, 2013, 140 (1-2) : 117 - 133
  • [33] ASYMPTOTICS FOR CHRISTOFFEL FUNCTIONS OF PLANAR MEASURES
    Bloom, T.
    Levenberg, N.
    JOURNAL D ANALYSE MATHEMATIQUE, 2008, 106 (1): : 353 - 371
  • [34] Christoffel functions with power type weights
    Danka, Tivadar
    Totik, Vilmos
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (03) : 747 - 796
  • [35] STRONG MOMENT PROBLEMS FOR RAPIDLY DECREASING SMOOTH FUNCTIONS
    DURAN, AL
    ESTRADA, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (02) : 529 - 534
  • [36] ANALYTIC FUNCTIONS ASSOCIATED WITH STRONG HAMBURGER MOMENT PROBLEMS
    Njastad, Olav
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2009, 52 : 181 - 187
  • [37] ADDITIONAL NOTE ON 2 MOMENT PROBLEMS FOR BOUNDED FUNCTIONS
    VERBLUNSKY, S
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1948, 44 (01): : 140 - 142
  • [38] Moment functions for solutions of random boundary value problems
    Richter, M
    vom Scheidt, J
    Starkloff, HJ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S641 - S642
  • [39] Holomorphic functions associated with indeterminate rational moment problems
    Bultheel, Adhemar
    Hendriksen, Erik
    Njastad, Olav
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 284 : 101 - 114
  • [40] Truncated moment problems in the class of generalized Nevanlinna functions
    Derkach, Vladimir
    Hassi, Seppo
    de Snoo, Henk
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (14-15) : 1741 - 1769