Compressed Linear Algebra for Large-Scale Machine Learning

被引:1
|
作者
Elgohary, Ahmed [1 ,2 ]
Boehm, Matthias [1 ]
Haas, Peter J. [1 ]
Reiss, Frederick R. [1 ]
Reinwald, Berthold [1 ]
机构
[1] IBM Res Almaden, San Jose, CA 95120 USA
[2] Univ Maryland, College Pk, MD 20742 USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2016年 / 9卷 / 12期
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large-scale machine learning (ML) algorithms are often iterative, using repeated read-only data access and I/Obound matrix-vector multiplications to converge to an optimal model. It is crucial for performance to fit the data into single-node or distributed main memory. General-purpose, heavy-and lightweight compression techniques struggle to achieve both good compression ratios and fast decompression speed to enable block-wise uncompressed operations. Hence, we initiate work on compressed linear algebra (CLA), in which lightweight database compression techniques are applied to matrices and then linear algebra operations such as matrix-vector multiplication are executed directly on the compressed representations. We contribute effective column compression schemes, cache-conscious operations, and an efficient sampling-based compression algorithm. Our experiments show that CLA achieves in-memory operations performance close to the uncompressed case and good compression ratios that allow us to fit larger datasets into available memory. We thereby obtain significant end-to-end performance improvements up to 26x or reduced memory requirements.
引用
收藏
页码:960 / 971
页数:12
相关论文
共 50 条
  • [21] Angel: a new large-scale machine learning system
    Jiang, Jie
    Yu, Lele
    Jiang, Jiawei
    Liu, Yuhong
    Cui, Bin
    NATIONAL SCIENCE REVIEW, 2018, 5 (02) : 216 - 236
  • [22] Quick extreme learning machine for large-scale classification
    Audi Albtoush
    Manuel Fernández-Delgado
    Eva Cernadas
    Senén Barro
    Neural Computing and Applications, 2022, 34 : 5923 - 5938
  • [23] Machine learning for large-scale crop yield forecasting
    Paudel, Dilli
    Boogaard, Hendrik
    de Wit, Allard
    Janssen, Sander
    Osinga, Sjoukje
    Pylianidis, Christos
    Athanasiadis, Ioannis N.
    AGRICULTURAL SYSTEMS, 2021, 187
  • [24] A review of Nystrom methods for large-scale machine learning
    Sun, Shiliang
    Zhao, Jing
    Zhu, Jiang
    INFORMATION FUSION, 2015, 26 : 36 - 48
  • [25] Introduction to Special Issue on Large-Scale Machine Learning
    Hsu, Chun-Nan
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
  • [26] Large-scale machine learning for metagenomics sequence classification
    Vervier, Kevin
    Mahe, Pierre
    Tournoud, Maud
    Veyrieras, Jean-Baptiste
    Vert, Jean-Philippe
    BIOINFORMATICS, 2016, 32 (07) : 1023 - 1032
  • [27] Large-Scale Strategic Games and Adversarial Machine Learning
    Alpcan, Tansu
    Rubinstein, Benjamin I. P.
    Leckie, Christopher
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 4420 - 4426
  • [28] Dynamic Control Flow in Large-Scale Machine Learning
    Yu, Yuan
    Abadi, Martin
    Barham, Paul
    Brevdo, Eugene
    Burrows, Mike
    Davis, Andy
    Dean, Jeff
    Ghemawat, Sanjay
    Harley, Tim
    Hawkins, Peter
    Isard, Michael
    Kudlur, Manjunath
    Monga, Rajat
    Murray, Derek
    Zheng, Xiaoqiang
    EUROSYS '18: PROCEEDINGS OF THE THIRTEENTH EUROSYS CONFERENCE, 2018,
  • [29] Large-Scale Machine Learning Approaches for Molecular Biophysics
    Ramanathan, Arvind
    Chennubhotla, Chakra S.
    Agarwal, Pratul K.
    Stanley, Christopher B.
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 370A - 370A
  • [30] Large-Scale Machine Learning at Verizon: Theory and Applications
    Srivastava, Ashok
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 417 - 417