Large-scale machine learning for metagenomics sequence classification

被引:52
|
作者
Vervier, Kevin [1 ,2 ,3 ,4 ]
Mahe, Pierre [1 ]
Tournoud, Maud [1 ]
Veyrieras, Jean-Baptiste [1 ]
Vert, Jean-Philippe [2 ,3 ,4 ]
机构
[1] bioMerieux, Bioinformat Res Dept, F-69280 Marcy Letoile, France
[2] PSL Res Univ, CBIO Ctr Computat Biol, MINES ParisTech, F-77300 Fontainebleau, France
[3] Inst Curie, F-75248 Paris, France
[4] INSERM U900, F-75248 Paris, France
基金
欧洲研究理事会;
关键词
D O I
10.1093/bioinformatics/btv683
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Metagenomics characterizes the taxonomic diversity of microbial communities by sequencing DNA directly from an environmental sample. One of the main challenges in metagenomics data analysis is the binning step, where each sequenced read is assigned to a taxonomic clade. Because of the large volume of metagenomics datasets, binning methods need fast and accurate algorithms that can operate with reasonable computing requirements. While standard alignment-based methods provide state-of-the-art performance, compositional approaches that assign a taxonomic class to a DNA read based on the k-mers it contains have the potential to provide faster solutions. Results: We propose a new rank-flexible machine learning-based compositional approach for taxonomic assignment of metagenomics reads and show that it benefits from increasing the number of fragments sampled from reference genome to tune its parameters, up to a coverage of about 10, and from increasing the k-mer size to about 12. Tuning the method involves training machine learning models on about 10(8) samples in 10(7) dimensions, which is out of reach of standard softwares but can be done efficiently with modern implementations for large-scale machine learning. The resulting method is competitive in terms of accuracy with well-established alignment and composition-based tools for problems involving a small to moderate number of candidate species and for reasonable amounts of sequencing errors. We show, however, that machine learning-based compositional approaches are still limited in their ability to deal with problems involving a greater number of species and more sensitive to sequencing errors. We finally show that the new method outperforms the state-of-the-art in its ability to classify reads from species of lineage absent from the reference database and confirm that compositional approaches achieve faster prediction times, with a gain of 2-17 times with respect to the BWA-MEM short read mapper, depending on the number of candidate species and the level of sequencing noise.
引用
收藏
页码:1023 / 1032
页数:10
相关论文
共 50 条
  • [1] Quick extreme learning machine for large-scale classification
    Audi Albtoush
    Manuel Fernández-Delgado
    Eva Cernadas
    Senén Barro
    Neural Computing and Applications, 2022, 34 : 5923 - 5938
  • [2] Quick extreme learning machine for large-scale classification
    Albtoush, Audi
    Fernandez-Delgado, Manuel
    Cernadas, Eva
    Barro, Senen
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (08): : 5923 - 5938
  • [3] Extreme Learning Machine for Large-Scale Graph Classification Based on MapReduce
    Wang, Zhanghui
    Zhao, Yuhai
    Wang, Guoren
    PROCEEDINGS OF ELM-2015, VOL 1: THEORY, ALGORITHMS AND APPLICATIONS (I), 2016, 6 : 93 - 105
  • [4] Chimera: Large-Scale Classification using Machine Learning, Rules, and Crowdsourcing
    Sun, Chong
    Rampalli, Narasimhan
    Yang, Frank
    Doan, Anhai
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2014, 7 (13): : 1529 - 1540
  • [5] Extreme Learning Machine for large-scale graph classification based on MapReduce
    Wang, Zhanghui
    Zhao, Yuhai
    Yuan, Ye
    Wang, Guoren
    Chen, Lei
    NEUROCOMPUTING, 2017, 261 : 106 - 114
  • [6] Large-scale data classification method based on machine learning model
    Department of Electrical Engineering, Dalian Institute of Science and Technology, Dalian, China
    Int. J. Database Theory Appl., 2 (71-80):
  • [7] A Survey on Large-Scale Machine Learning
    Wang, Meng
    Fu, Weijie
    He, Xiangnan
    Hao, Shijie
    Wu, Xindong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (06) : 2574 - 2594
  • [8] Hierarchical Classification for Large-Scale Learning
    Wang, Boshi
    Barbu, Adrian
    ELECTRONICS, 2023, 12 (22)
  • [9] Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets
    Lanka, Pradyumna
    Rangaprakash, D.
    Dretsch, Michael N.
    Katz, Jeffrey S.
    Denney, Thomas S., Jr.
    Deshpande, Gopikrishna
    BRAIN IMAGING AND BEHAVIOR, 2020, 14 (06) : 2378 - 2416
  • [10] Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets
    Pradyumna Lanka
    D Rangaprakash
    Michael N. Dretsch
    Jeffrey S. Katz
    Thomas S. Denney
    Gopikrishna Deshpande
    Brain Imaging and Behavior, 2020, 14 : 2378 - 2416