One-Dimensional Quasiperiodic Tilings Admitting Progressions Enclosure

被引:0
|
作者
Krasil'shchikov, V. V. [1 ]
Shutov, A. V. [1 ]
Zhuravlev, V. G. [1 ]
机构
[1] Vladimir State Humanitarian Univ, Pr Stroitelei 11, Vladimir 600024, Russia
基金
俄罗斯基础研究基金会;
关键词
one-dimensional quasiperiodic tilings; lattice enclosure;
D O I
10.3103/S1066369X09070019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider one-dimensional quasiperiodic tilings based on the use of irrational rotations of a circle. We completely describe a wide class of progressions included in the mentioned tilings.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [31] Localization for a Family of One-dimensional Quasiperiodic Operators of Magnetic Origin
    S. Jitomirskaya
    D. A. Koslover
    M. S. Schulteis
    Annales Henri Poincaré, 2005, 6 : 103 - 124
  • [32] Characteristic wavefunctions of one-dimensional periodic, quasiperiodic and random lattices
    Huang, XQ
    Jiang, SS
    Peng, RW
    Liu, YM
    Qiu, F
    Hu, A
    MODERN PHYSICS LETTERS B, 2003, 17 (27-28): : 1461 - 1476
  • [33] Phonon diffusion in harmonic and anharmonic one-dimensional quasiperiodic lattices
    Naumis, GG
    Salazar, F
    Wang, C
    PHILOSOPHICAL MAGAZINE, 2006, 86 (6-8) : 1043 - 1049
  • [34] Lateral shift in one-dimensional quasiperiodic chiral photonic crystal
    Da, Jian
    Mo, Qi
    Cheng, Yaokun
    Liu, Taixiang
    PHYSICA B-CONDENSED MATTER, 2015, 458 : 63 - 66
  • [35] Defect mode in periodic and quasiperiodic one-dimensional photonic structures
    Ehab Abdel-Rahman
    Amr Shaarawi
    Journal of Materials Science: Materials in Electronics, 2009, 20 : 153 - 158
  • [36] Magnetic properties of one-dimensional quasiperiodic Co/Pt multilayers
    Zhu, L.Y.
    Cheng, X.M.
    Chien, C.L.
    Journal of Applied Physics, 2006, 99 (08):
  • [37] Magnetic properties of one-dimensional quasiperiodic Co/Pt multilayers
    Zhu, L. Y.
    Cheng, X. M.
    Chien, C. L.
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
  • [38] Correlations and superfluidity of a one-dimensional Bose gas in a quasiperiodic potential
    Cetoli, Alberto
    Lundh, Emil
    PHYSICAL REVIEW A, 2010, 81 (06):
  • [39] Emergence of multiple localization transitions in a one-dimensional quasiperiodic lattice
    Padhan, Ashirbad
    Giri, Mrinal Kanti
    Mondal, Suman
    Mishra, Tapan
    PHYSICAL REVIEW B, 2022, 105 (22)
  • [40] SELF-SIMILARITIES IN ONE-DIMENSIONAL PERIODIC AND QUASIPERIODIC SYSTEMS
    ODAGAKI, T
    AOYAMA, H
    PHYSICAL REVIEW B, 1989, 39 (01): : 475 - 487