One-Dimensional Quasiperiodic Tilings Admitting Progressions Enclosure

被引:0
|
作者
Krasil'shchikov, V. V. [1 ]
Shutov, A. V. [1 ]
Zhuravlev, V. G. [1 ]
机构
[1] Vladimir State Humanitarian Univ, Pr Stroitelei 11, Vladimir 600024, Russia
基金
俄罗斯基础研究基金会;
关键词
one-dimensional quasiperiodic tilings; lattice enclosure;
D O I
10.3103/S1066369X09070019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider one-dimensional quasiperiodic tilings based on the use of irrational rotations of a circle. We completely describe a wide class of progressions included in the mentioned tilings.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [21] Subdiffusion of Dipolar Gas in One-Dimensional Quasiperiodic Potentials
    Bai Xiao-Dong
    Xue Ju-Kui
    CHINESE PHYSICS LETTERS, 2015, 32 (01)
  • [22] Optical properties of quasiperiodic (fractals) one-dimensional structures
    Sibilia, C
    NANOSCALE LINEAR AND NONLINEAR OPTICS, 2001, 560 : 220 - 236
  • [23] Ballistic Transport for One-Dimensional Quasiperiodic Schrodinger Operators
    Ge, Lingrui
    Kachkovskiy, Ilya
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (10) : 2577 - 2612
  • [24] Wave propagation in one-dimensional optical quasiperiodic systems
    Hollingworth, JM
    Vourdas, A
    Backhouse, N
    PHYSICAL REVIEW E, 2001, 64 (03): : 7
  • [25] Anomalous mobility edges in one-dimensional quasiperiodic models
    Liu, Tong
    Xia, Xu
    Longhi, Stefano
    Sanchez-Palencia, Laurent
    SCIPOST PHYSICS, 2022, 12 (01):
  • [26] Propagation of electromagnetic waves in one-dimensional quasiperiodic media
    Badalyan, V. D.
    ASTROPHYSICS, 2006, 49 (04) : 538 - 542
  • [27] One-dimensional tilings using tiles with two gap lengths
    Nakamigawa, T
    GRAPHS AND COMBINATORICS, 2005, 21 (01) : 97 - 105
  • [28] Hyperuniformity and anti-hyperuniformity in one-dimensional substitution tilings
    Oguz, Erdal C.
    Socolar, Joshua E. S.
    Steinhardt, Paul J.
    Torquato, Salvatore
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2019, 75 : 3 - 13
  • [29] One-dimensional Tilings Using Tiles with Two Gap Lengths
    Tomoki Nakamigawa
    Graphs and Combinatorics, 2005, 21 : 97 - 105
  • [30] One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges
    Wang, Yucheng
    Xia, Xu
    Zhang, Long
    Yao, Hepeng
    Chen, Shu
    You, Jiangong
    Zhou, Qi
    Liu, Xiong-Jun
    PHYSICAL REVIEW LETTERS, 2020, 125 (19)