Turbine Size and Temperature Dependence of Icing on Wind Turbine Blades

被引:17
|
作者
Homola, Matthew [1 ]
Wallenius, Tomas [2 ]
Makkonen, Lasse [2 ]
Nicklasson, Per [1 ]
Sundsbo, Per [1 ]
机构
[1] Narvik Univ Coll, Dept Comp Sci Elect Engn & Space Technol, N-8515 Narvik, Norway
[2] VTT Tech Res Ctr Finland, FI-02044 Espoo, Finland
关键词
wind energy; atmospheric icing; scaling; icing effects; temperature;
D O I
10.1260/0309-524X.34.6.615
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The dependence of atmospheric icing on temperature and wind turbine size was studied by performing numerical simulations of ice accumulation on five different wind turbine blade profiles at four different temperatures. The profiles were for 450 kW, 600 kW, 1 MW, 2 MW and 5 MW wind turbines, and the temperatures -10 degrees C, -7.5 degrees C, -5 degrees C and -2.5 degrees C. The simulations indicate that generally atmospheric icing is less severe for larger wind turbines in terms of how much the aerodynamics are disturbed, but the opposite can be true under certain specific conditions. It is indicated that the air temperature range at which the transition between glaze and rime ice occurs is lower for the larger wind turbines.
引用
收藏
页码:615 / 627
页数:13
相关论文
共 50 条
  • [31] Ultrasonic de-icing of wind turbine blades: Performance comparison of perspective transducers
    Daniliuk, Vladislav
    Xu, Yuanming
    Liu, Ruobing
    He, Tianpeng
    Wang, Xi
    RENEWABLE ENERGY, 2020, 145 : 2005 - 2018
  • [32] Boundary-layer transition model for icing simulations of rotating wind turbine blades
    Son, Chankyu
    Kelly, Mark
    Kim, Taeseong
    RENEWABLE ENERGY, 2021, 167 : 172 - 183
  • [33] Efficient Anti-Icing of a Stable PFA Coating for Wind Power Turbine Blades
    Zhang, He
    Wang, Bing-Bing
    Wang, Xin
    Deng, Jie-Wen
    Yan, Wei-Mon
    LANGMUIR, 2024, 40 (28) : 14724 - 14737
  • [34] Multi-scale superhydrophobic anti-icing coating for wind turbine blades
    Bao J.
    He J.
    Chen B.
    Yang K.
    Jie J.
    Wang R.
    Zhang S.
    Energy Engineering: Journal of the Association of Energy Engineering, 2021, 118 (04): : 947 - 959
  • [35] CRONE control based anti-icing/deicing system for wind turbine blades
    Sabatier, J.
    Lanusse, P.
    Feytout, B.
    Gracia, S.
    CONTROL ENGINEERING PRACTICE, 2016, 56 : 200 - 209
  • [36] A light lithium niobate transducer for the ultrasonic de-icing of wind turbine blades
    Wang, Zhenjun
    Xu, Yuanming
    Su, Fei
    Wang, Yibing
    RENEWABLE ENERGY, 2016, 99 : 1299 - 1305
  • [37] OPTICAL FIBER SENSING AND THICKNESS DISTRIBUTION ESTIMATION OF ICING STATE ON WIND TURBINE BLADES
    Li W.
    Wen F.
    Chen G.
    Shu Y.
    Wang Z.
    Zhou Z.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (03): : 77 - 83
  • [38] Lightning protection of wind turbine blades
    Yokoyama, Shigeru
    ELECTRIC POWER SYSTEMS RESEARCH, 2013, 94 : 3 - 9
  • [39] Shape Optimization of Wind Turbine Blades
    Xudong, Wang
    Shen, Wen Zhong
    Zhu, Wei Jun
    Sorensen, Jens Norkaer
    Jin, Chen
    WIND ENERGY, 2009, 12 (08) : 781 - 803
  • [40] Transient vibration of wind turbine blades
    Li, Yuanzhe
    Li, Minghai
    Jiang, Feng
    2017 3RD INTERNATIONAL CONFERENCE ON APPLIED MATERIALS AND MANUFACTURING TECHNOLOGY (ICAMMT 2017), 2017, 242