A PROBABILISTIC PROOF OF THE GAUSS-BONNET-CHERN THEOREM FOR MANIFOLDS WITH BOUNDARY

被引:0
|
作者
SHIGEKAWA, I [1 ]
UEKI, N [1 ]
WATANABE, S [1 ]
机构
[1] OSAKA UNIV,FAC SCI,DEPT MATH,TOYONAKA,OSAKA 560,JAPAN
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:897 / 930
页数:34
相关论文
共 50 条
  • [31] Topological structure of Gauss-Bonnet-Chern theorem and (p)over-tilde-branes
    Tian Miao
    Zhang Xin-Hui
    Duan Yi-Shi
    CHINESE PHYSICS B, 2009, 18 (04) : 1301 - 1305
  • [32] 超对称和Gauss-Bonnet-Chern定理
    虞跃
    高能物理与核物理, 1988, (01) : 28 - 33
  • [33] The Gauss-Bonnet-Chern mass under geometric flows
    Ho, Pak Tung
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (11)
  • [34] Multi-instantons, three-dimensional gauge theory, and the Gauss-Bonnet-Chern theorem
    Dorey, N
    Khoze, VV
    Mattis, MP
    NUCLEAR PHYSICS B, 1997, 502 (1-2) : 94 - 106
  • [35] THE GAUSS-BONNET-CHERN MASS OF HIGHER-CODIMENSION GRAPHS
    de Sousa, Alexandre
    Girao, Frederico
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 298 (01) : 201 - 216
  • [36] Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality
    Yuxin Ge
    Guofang Wang
    Jie Wu
    Chao Xia
    Frontiers of Mathematics in China, 2016, 11 : 1207 - 1237
  • [37] On the Gauss-Bonnet-Chern formula for real Finsler vector bundles
    Zhao, Wei
    Yuan, Lixia
    Shen, Yibing
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 47 : 43 - 56
  • [38] Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality
    Ge, Yuxin
    Wang, Guofang
    Wu, Jie
    Xia, Chao
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (05) : 1207 - 1237
  • [39] The Gauss–Bonnet–Chern mass for graphic manifolds
    Haizhong Li
    Yong Wei
    Changwei Xiong
    Annals of Global Analysis and Geometry, 2014, 45 : 251 - 266
  • [40] Gauss-Bonnet-Chern曲率的变分公式(英文)
    郭希
    吴岚
    数学进展, 2018, 47 (02) : 231 - 242