The Brownian motion process.

被引:0
|
作者
Schmidt, W
机构
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:1191 / 1194
页数:4
相关论文
共 50 条
  • [41] Existence for stochastic sweeping process with fractional Brownian motion
    Blouhi, Tayeb
    Ferhat, Mohamed
    Benmansour, Safia
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2022, 67 (04): : 749 - 771
  • [42] Estimation for translation of a process driven by fractional Brownian motion
    Rao, BLSP
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (06) : 1199 - 1212
  • [43] AN ERGODIC PROPERTY OF THE BROWNIAN MOTION PROCESS - (PRELIMINARY REPORT)
    DERMAN, C
    ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (02): : 411 - 412
  • [44] A punctual process associated with local maxima of Brownian motion
    Leuridan, Christophe
    PROBABILITY THEORY AND RELATED FIELDS, 2010, 148 (3-4) : 457 - 477
  • [45] EXTENDED CONVERGENCE OF THE EXTREMAL PROCESS OF BRANCHING BROWNIAN MOTION
    Bovier, Anton
    Hartung, Lisa
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (03): : 1756 - 1777
  • [46] Test to distinguish a Brownian motion from a Brownian bridge using Polya tree process
    Bharath, Karthik
    Dey, Dipak K.
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (01) : 140 - 145
  • [47] Black hole motion in Euclidean space as a diffusion process. II
    Ropotenko, K.
    PHYSICAL REVIEW D, 2013, 87 (04):
  • [48] Is it Brownian or fractional Brownian motion?
    Li, Meiyu
    Gencay, Ramazan
    Xue, Yi
    ECONOMICS LETTERS, 2016, 145 : 52 - 55
  • [49] Brownian motion in a Brownian crack
    Burdzy, K
    Khoshnevisan, D
    ANNALS OF APPLIED PROBABILITY, 1998, 8 (03): : 708 - 748
  • [50] Convergence of the Weierstrass-Mandelbrot process to fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2000, 8 (04) : 369 - 384