Polynomial Generated by the Fibonacci Sequence

被引:0
|
作者
Garth, David [1 ]
Mills, Donald [2 ]
Mitchell, Patrick [3 ]
机构
[1] Truman State Univ, Div Math & Comp Sci, Kirksville, MO 63501 USA
[2] Rose Hulman Inst Technol, Dept Math, Terre Haute, IN 47803 USA
[3] Midwestern State Univ, Dept Math, Wichita Falls, TX 76308 USA
关键词
Fibonacci; sequence; polynomial; zero; root; Rouches theorem; Mahler measure;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Fibonacci sequence's initial terms are F-0 = 0 and F-1 = Fn-1 + Fn-2 for n >= 2. We define the polynomial sequence p by setting p(0)(x) = 1 and p(n)(x) =xp(n-1)(x) + Fn+1 for n >= 1 with p(n)(x) = Sigma(n)(k=0) F(k+1)x(n-k) We call p(n)(x) the Fibonacci-coefficient polynomial (FCP) of order n. The FCP sequence is distinct from the well-known Fibonacci polynomial sequence. We answer several questions regarding these polynomials. Specifically, we show that each even-degree FCP has no real zeros, while each odd-degree FCP has a unique,and (for degree at least 3) irrational, real zero. Further, we show that this sequence of unique real zeros converges monotonically to the negative of the golden ratio. Using Rouches theorem, we prove that the zeros of the FCPs approach the golden ratio in modulus. We also prove a general result that gives the Mahler measures of an infinite subsequence of the FCP sequence whose coefficients are reduced modulo an integer m >= 2. We then apply this to the case that m = L-n, the nth Lucas number, showing that the Mahler measure of the subsequence is phi(n-1), where 1+root 5/2.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Cube Polynomial of Fibonacci and Lucas Cubes
    Sandi Klavžar
    Michel Mollard
    Acta Applicandae Mathematicae, 2012, 117 : 93 - 105
  • [32] Some aspects of Fibonacci polynomial congruences
    Shannon, Anthony G.
    Cook, Charles K.
    Hillman, Rebecca A.
    ANNALES MATHEMATICAE ET INFORMATICAE, 2013, 41 : 211 - 217
  • [33] On the arguments of the roots of the generalized Fibonacci polynomial
    Adel Alahmadi
    Oleksiy Klurman
    Florian Luca
    Hatoon Shoaib
    Lithuanian Mathematical Journal, 2023, 63 : 249 - 253
  • [34] The Fibonacci number of Fibonacci trees and a related family of polynomial recurrence systems
    Wagner, Stephan G.
    FIBONACCI QUARTERLY, 2007, 45 (03): : 247 - 253
  • [35] High Rate Fibonacci Polynomial Codes
    Esmaeili, Mostafa
    Esmaeili, Morteza
    Gulliver, T. Aaron
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011,
  • [36] On the separation of the roots of the generalized Fibonacci polynomial
    Garcia, Jonathan
    Gomez, Carlos A.
    Luca, Florian
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2024, 35 (02): : 269 - 281
  • [37] TRIANGULAR NUMBERS AND GENERALIZED FIBONACCI POLYNOMIAL
    Sahin, Adem
    MATHEMATICA SLOVACA, 2022, 72 (06) : 1463 - 1470
  • [38] Cube Polynomial of Fibonacci and Lucas Cubes
    Klavzar, Sandi
    Mollard, Michel
    ACTA APPLICANDAE MATHEMATICAE, 2012, 117 (01) : 93 - 105
  • [39] On the Fibonacci Almost Convergent Sequence Space and Fibonacci Core
    Demiriz, Serkan
    Kara, Emrah Evren
    Basarir, Metin
    KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (02): : 355 - 372
  • [40] An image encryption scheme using sequence generated by interval bisection of polynomial function
    Biswas, Priyajit
    Kandar, Shyamalendu
    Dhara, Bibhas Chandra
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (43-44) : 31715 - 31738