Polynomial Generated by the Fibonacci Sequence

被引:0
|
作者
Garth, David [1 ]
Mills, Donald [2 ]
Mitchell, Patrick [3 ]
机构
[1] Truman State Univ, Div Math & Comp Sci, Kirksville, MO 63501 USA
[2] Rose Hulman Inst Technol, Dept Math, Terre Haute, IN 47803 USA
[3] Midwestern State Univ, Dept Math, Wichita Falls, TX 76308 USA
关键词
Fibonacci; sequence; polynomial; zero; root; Rouches theorem; Mahler measure;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Fibonacci sequence's initial terms are F-0 = 0 and F-1 = Fn-1 + Fn-2 for n >= 2. We define the polynomial sequence p by setting p(0)(x) = 1 and p(n)(x) =xp(n-1)(x) + Fn+1 for n >= 1 with p(n)(x) = Sigma(n)(k=0) F(k+1)x(n-k) We call p(n)(x) the Fibonacci-coefficient polynomial (FCP) of order n. The FCP sequence is distinct from the well-known Fibonacci polynomial sequence. We answer several questions regarding these polynomials. Specifically, we show that each even-degree FCP has no real zeros, while each odd-degree FCP has a unique,and (for degree at least 3) irrational, real zero. Further, we show that this sequence of unique real zeros converges monotonically to the negative of the golden ratio. Using Rouches theorem, we prove that the zeros of the FCPs approach the golden ratio in modulus. We also prove a general result that gives the Mahler measures of an infinite subsequence of the FCP sequence whose coefficients are reduced modulo an integer m >= 2. We then apply this to the case that m = L-n, the nth Lucas number, showing that the Mahler measure of the subsequence is phi(n-1), where 1+root 5/2.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] The Fibonacci sequence
    Zaeperel
    COMPTES RENDUS DES SEANCES DE LA SOCIETE DE BIOLOGIE ET DE SES FILIALES, 1919, 82 : 853 - 855
  • [12] Fibonacci Sequence
    Graubart, Michael
    TEMPO, 2009, 250 : 58 - 59
  • [13] THE FIBONACCI SEQUENCE AND THE TIME-COMPLEXITY OF GENERATING THE CONWAY POLYNOMIAL AND RELATED TOPOLOGICAL INVARIANTS
    BRADFORD, PG
    FIBONACCI QUARTERLY, 1990, 28 (03): : 240 - 251
  • [14] A POLYNOMIAL FORMULA FOR FIBONACCI NUMBERS
    BEZUSZKA, S
    KOKOSKA, S
    FIBONACCI QUARTERLY, 1990, 28 (02): : 151 - 155
  • [15] Generalized Fibonacci polynomial of graph
    Wloch, I
    ARS COMBINATORIA, 2003, 68 : 49 - 55
  • [16] Identities for the generalized Fibonacci polynomial
    Flórez, Rigoberto
    McAnally, Nathan
    Mukherjee, Antara
    arXiv, 2017,
  • [17] Polynomial values in Fibonacci sequences
    Ostrov, Adi
    Neftin, Danny
    Berman, Avi
    Elrazik, Reyad A.
    INVOLVE, A JOURNAL OF MATHEMATICS, 2020, 13 (04): : 597 - 605
  • [18] A FIBONACCI POLYNOMIAL SEQUENCE DEFINED BY MULTIDIMENSIONAL CONTINUED FRACTIONS - AND HIGHER-ORDER GOLDEN RATIOS
    MOORE, GA
    FIBONACCI QUARTERLY, 1993, 31 (04): : 354 - 364
  • [19] On primes in the Fibonacci sequence
    Drobot, V
    FIBONACCI QUARTERLY, 2000, 38 (01): : 71 - 72
  • [20] A KIND OF FIBONACCI SEQUENCE
    SHI, XQ
    CHINESE SCIENCE BULLETIN, 1994, 39 (04): : 348 - 349