A counterexample to an algorithm for computing monotone hulls of simple polygons

被引:8
|
作者
Toussaint, Godfried T. [1 ]
El Gindy, Hossam [1 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2K6, Canada
关键词
Convex hull; monotone hull; maximal polygons; simple polygons; weakly externally visible polygons; algorithms; complexity; computational geometry; pattern recognition;
D O I
10.1016/0167-8655(83)90028-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A two-stage algorithm was recently proposed by Sklansky ( 1982) for computing the convex hull of a simple polygon P. The first step is intended to compute a simple polygon P* which is monotonic in both the x and y directions and which contains the convex hull vertices of P. The second step applies a very simple convex hull algorithm on P*. In this note we show that the first step does not always work correctly and can even yield non-simple polygons, invalidating the use of the second step. It is also shown that the first step can discard convex hull vertices thus invalidating the use of any convex hull algorithm in the second step.
引用
收藏
页码:219 / 222
页数:4
相关论文
共 50 条
  • [12] GPU-based parallel algorithm for computing point visibility inside simple polygons
    Shoja, Ehsan
    Ghodsi, Mohammad
    COMPUTERS & GRAPHICS-UK, 2015, 49 : 1 - 9
  • [13] COMPUTING GEODESIC FURTHEST NEIGHBORS IN SIMPLE POLYGONS
    SURI, S
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1989, 39 (02) : 220 - 235
  • [14] Computing the Frechet distance between simple polygons
    Buchin, Kevin
    Buchin, Maike
    Wenk, Carola
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2008, 41 (1-2): : 2 - 20
  • [15] A simple algorithm for Boolean operations on polygons
    Martinez, Francisco
    Ogayar, Carlos
    Jimenez, Juan R.
    Rueda, Antonio J.
    ADVANCES IN ENGINEERING SOFTWARE, 2013, 64 : 11 - 19
  • [16] An approximate algorithm for computing multidimensional convex hulls
    Xu, ZB
    Zhang, JS
    Leung, YW
    APPLIED MATHEMATICS AND COMPUTATION, 1998, 94 (2-3) : 193 - 226
  • [17] A new algorithm for computing Boolean operations on polygons
    Martinez, Francisco
    Jesus Rueda, Antonio
    Ramon Feito, Francisco
    COMPUTERS & GEOSCIENCES, 2009, 35 (06) : 1177 - 1185
  • [18] Shortest Watchman Tours in Simple Polygons Under Rotated Monotone Visibility
    Nilsson, Bengt J.
    Orden, David
    Palios, Leonidas
    Seara, Carlos
    Zylinski, Pawel
    COMPUTING AND COMBINATORICS (COCOON 2020), 2020, 12273 : 311 - 323
  • [19] Rotationally monotone polygons
    Bose, Prosenjit
    Morin, Pat
    Smid, Michiel
    Wuhrer, Stefanie
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (05): : 471 - 483
  • [20] Convexifying monotone polygons
    Biedl, TC
    Demaine, ED
    Lazard, S
    Robbins, SM
    Soss, MA
    ALGORITHMS AND COMPUTATIONS, 2000, 1741 : 415 - 424