Propagation of hydrogen-air detonation in tube with obstacles

被引:0
|
作者
Rudy, Wojciech [1 ]
Porowski, Rafal [1 ]
Teodorczyk, Andrzej [1 ]
机构
[1] Warsaw Univ Technol, Inst Heat Engn, 21-25 Nowowiejska St, PL-00665 Warsaw, Poland
来源
JOURNAL OF POWER TECHNOLOGIES | 2011年 / 91卷 / 03期
关键词
Detonation; Hydrogen Combustion; Numerical Simulation; DETO2D;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
An experimental and computational study of flame propagation, acceleration and transition to detonation in stoichiometric hydrogen-air mixtures in 6 m long tube filled with obstacles located at different configurations was performed. The initial conditions of the hydrogen-air mixtures were 0.1 MPa and 293 K. Four different cases of obstacle blockage ratio (BR) 0.7, 0.6, 0.5 and 0.4 and three cases of obstacle spacing were used. The wave propagation was monitored by piezoelectric pressure transducers PCB. Pressure transducers were located at different positions along the channel to collect data concerning detonation propagation. Tested mixtures were ignited by a weak electric spark at one end of the tube. In order to support the experimental results we performed series of CFD simulations for the same conditions of hydrogen-air mixtures and the geometry of the tube. The simulation tool used in this study was a two-dimensional DETO2D code, dedicated to simulate the propagation of gaseous detonations in complex geometries.
引用
收藏
页码:122 / 129
页数:8
相关论文
共 50 条
  • [31] Inhibition of stationary detonation waves in hydrogen-air mixtures
    V. V. Azatyan
    D. I. Baklanov
    I. S. Gordopolova
    S. K. Abramov
    A. A. Piloyan
    Doklady Physical Chemistry, 2007, 415 : 174 - 177
  • [32] Inhibition of stationary detonation waves in hydrogen-air mixtures
    Azatyan, V. V.
    Baklanov, D. I.
    Gordopolova, I. S.
    Abramov, S. K.
    Piloyan, A. A.
    DOKLADY PHYSICAL CHEMISTRY, 2007, 415 (1) : 174 - 177
  • [33] Coupling characteristic analysis and propagation direction control in hydrogen-air rotating detonation combustor with turbine
    Zhao, Ting
    Zhu, Jianfeng
    Ling, Meiting
    Yan, Cheng
    You, Yancheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (58) : 22250 - 22263
  • [34] Reinitiation phenomenon in hydrogen-air rotating detonation engine
    Yao, Songbai
    Ma, Zhuang
    Zhang, Shujie
    Luan, Mingyi
    Wang, Jianping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (47) : 28588 - 28598
  • [35] Turbulent jet initiation of detonation in hydrogen-air mixtures
    Dorofeev, SB
    Bezmelnitsin, AV
    Sidorov, VP
    Yankin, JG
    Matsukov, ID
    SHOCK WAVES, 1996, 6 (02) : 73 - 78
  • [36] COMBUSTION AND DETONATION OF HYDROGEN-AIR MIXTURES IN FREE SPACES
    MAKEEV, VI
    GOSTINTSEV, YA
    STROGONOV, VV
    BOKHON, YA
    CHERNUSHKIN, YN
    KULIKOV, VN
    COMBUSTION EXPLOSION AND SHOCK WAVES, 1983, 19 (05) : 548 - 550
  • [37] Analysis of Hydrogen-Air Detonation Waves with Vibrational Nonequilibrium
    Voelkel, Stephen
    Masselot, Damien
    Varghese, Philip L.
    Raman, Venkat
    30TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS (RGD 30), 2016, 1786
  • [38] Experimental study of a hydrogen-air rotating detonation combustor
    Zhou, Shengbing
    Ma, Hu
    Liu, Daokun
    Yan, Yu
    Li, Shuai
    Zhou, Changsheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (21) : 14741 - 14749
  • [39] Oblique shock to detonation transition in hydrogen-air mixtures
    Wang, Tao
    Zhang, Yining
    Teng, Honghui
    Jiang, Zonglin
    FRONTIERS IN FLUID MECHANICS RESEARCH, 2015, 126 : 209 - 213
  • [40] Experimental and numerical studies on detonation of hydrogen-air mixtures
    Zbikowski, Mateusz
    Dabkowski, Andrzej
    Lesiak, Piotr
    Bak, Damian
    Dziechciarz, Anna
    Teodorczyk, Andrzej
    PRZEMYSL CHEMICZNY, 2017, 96 (04): : 858 - 862