A fast multipole accelerated BEM for 3-D elastic wave computation

被引:4
|
作者
Chaillat, Stephanie [1 ,2 ]
Bonnet, Marc [1 ]
Semblat, Jean-Francois [2 ]
机构
[1] Ecole Polytech, Dept Mech, Solid Mech Lab UMR CNRS 7649, F-91128 Palaiseau, France
[2] Univ Paris Est, Lab Cent Ponts & Chaussees, F-75015 Paris, France
来源
关键词
boundary element method; fast multipole method; 3D elastodynamics;
D O I
10.3166/REMN.17.701-712
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The solution of the elastodynamic equations using boundary element methods (BEMs) gives rise to fully-populated matrix equations. Earlier investigations on the Helmholtz and Maxwell equations have established that the Fast Multipole (FM) method reduces the complexity of a BEM solution to N log(2) N per GMRES iteration. The present article addresses the extension of the FM-BEM strategy to 3D elastodynamics in the frequency domain. Efficiency and accuracy are demonstrated on numerical examples involving up to N = O(10(6)) boundary nodal unknowns.
引用
收藏
页码:701 / 712
页数:12
相关论文
共 50 条