Enzymatic activities involved in glucose fermentation of Actinomyces naeslundii were studied with glucose-grown cells from batch cultures, Glucose could be phosphorylated to glucose 6-phosphate by a glucokinase that utilized polyphosphate and GTP instead of ATP as a phosphoryl donor. Glucose 6-phosphate was further metabolized to the end products lactate, formate, acetate, and succinate through the Embden-Meyerhof-Parnas pathway. The phosphoryl donor for phosphofructokinase was only PPi. Phosphoglycerate kinase, pyruvate kinase, and acetate kinase coupled GDP as well as ADP, but P-i compounds were not their phosphoryl acceptor, Cell extracts showed GDP-dependent activity of phosphoenolpyruvate carboxykinase, which assimilates bicarbonate and phosphoenolpyruvate into oxaloacetate, a precursor of succinate, Considerable amounts of GTP, polyphosphate, and PPi were found in glucose-fermenting cells, indicating that these compounds may serve as phosphoryl donors or acceptors in Actinomyces cells. PPi could be generated from UTP and glucose 1-phosphate through catalysis of UDP-glucose synthase, which provides UDP-glucose, a precursor of glycogen.