indirect inference;
nonparametric maximum likelihood;
uniform central limit theorem;
D O I:
10.3103/S1066530711040028
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Indirect inference estimators (i.e., simulation-based minimum distance estimators) in a parametric model that are based on auxiliary nonparametric maximum likelihood density estimators are shown to be asymptotically normal. If the parametricmodel is correctly specified, it is furthermore shown that the asymptotic variance-covariance matrix equals the inverse of the Fisher-information matrix. These results are based on uniform-in-parameters convergence rates and a uniform-inparameters Donsker-type theorem for nonparametric maximum likelihood density estimators.
机构:
Univ Massachusetts Amherst, Dept Math & Stat, Amherst, MA 01003 USAUniv Massachusetts Amherst, Dept Math & Stat, Amherst, MA 01003 USA
Westling, Ted
Downes, Kevin J.
论文数: 0引用数: 0
h-index: 0
机构:
Childrens Hosp Philadelphia, Div Infect Dis, Philadelphia, PA 19104 USA
Univ Penn, Perelman Sch Med, Dept Pediat, Philadelphia, PA 19104 USAUniv Massachusetts Amherst, Dept Math & Stat, Amherst, MA 01003 USA
Downes, Kevin J.
Small, Dylan S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA 19104 USAUniv Massachusetts Amherst, Dept Math & Stat, Amherst, MA 01003 USA