Nonparametric Maximum Likelihood Density Estimation and Simulation-Based Minimum Distance Estimators

被引:2
|
作者
Gach, F. [1 ]
Poetscher, B. M. [1 ]
机构
[1] Univ Vienna, Dept Stat, Vienna, Austria
关键词
indirect inference; nonparametric maximum likelihood; uniform central limit theorem;
D O I
10.3103/S1066530711040028
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Indirect inference estimators (i.e., simulation-based minimum distance estimators) in a parametric model that are based on auxiliary nonparametric maximum likelihood density estimators are shown to be asymptotically normal. If the parametricmodel is correctly specified, it is furthermore shown that the asymptotic variance-covariance matrix equals the inverse of the Fisher-information matrix. These results are based on uniform-in-parameters convergence rates and a uniform-inparameters Donsker-type theorem for nonparametric maximum likelihood density estimators.
引用
收藏
页码:288 / 326
页数:39
相关论文
共 50 条