ANALYTIC SOLUTIONS OF BLOCH AND MAXWELL-BLOCH EQUATIONS IN THE CASE OF ARBITRARY FIELD AMPLITUDE AND PHASE MODULATION

被引:17
|
作者
ALEKSEEV, AV
SUSHILOV, NV
机构
[1] Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690032
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 01期
关键词
D O I
10.1103/PhysRevA.46.351
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The matrix exponent method which we applied recently for the solution of the Bloch equations [Sov. Phys. JETP 62, 1125 (1985)] allows us to obtain in the present paper the Bloch-equation solutions when the amplitude and the phase of the exciting field are arbitrary functions of time. The solution's validity conditions are derived. It is shown that one can also apply the matrix exponent method to the solution of the Maxwell-Bloch equations. The equation describing the evolution of the area of a pulse with modulated envelope and phase is obtained. This equation has an analytic solution which is a generalization of the well-known McCall-Hahn solution.
引用
收藏
页码:351 / 355
页数:5
相关论文
共 50 条
  • [21] GENERALIZATION OF THE MAXWELL-BLOCH EQUATIONS TO THE CASE OF STRONG ATOM-FIELD COUPLING
    KOCHAROVSKAYA, O
    ZHU, SY
    SCULLY, MO
    MANDEL, P
    RADEONYCHEV, YV
    PHYSICAL REVIEW A, 1994, 49 (06): : 4928 - 4934
  • [22] SOLITON CONNECTION OF THE REDUCED MAXWELL-BLOCH EQUATIONS
    GRAUEL, A
    LETTERE AL NUOVO CIMENTO, 1984, 41 (08): : 263 - 268
  • [23] REDUCTION OF THE MAXWELL-BLOCH EQUATIONS TO A STANDARD FORM
    SOLARI, HG
    GILMORE, R
    OPTICS COMMUNICATIONS, 1989, 71 (1-2) : 85 - 91
  • [24] GLOBAL STOCHASTICITY CRITERION FOR MAXWELL-BLOCH EQUATIONS
    GANGOPADHYAY, G
    RAY, DS
    PHYSICAL REVIEW A, 1989, 40 (07): : 3750 - 3753
  • [25] Self-oscillation in the Maxwell-Bloch equations
    Wu, Jie
    Armen, Michael A.
    Mabuchi, Hideo
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (10) : 2382 - 2386
  • [26] FACTORIZATION ASSUMPTION IN THE SOLUTION OF MAXWELL-BLOCH EQUATIONS
    MATULIC, L
    SANCHEZMONDRAGON, JJ
    TORRESCISNEROS, G
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1982, 72 (12) : 1734 - 1734
  • [27] Rogue waves of the Hirota and the Maxwell-Bloch equations
    Li, Chuanzhong
    He, Jingsong
    Porseizan, K.
    PHYSICAL REVIEW E, 2013, 87 (01)
  • [28] Lattices of Neumann oscillators and Maxwell-Bloch equations
    Saksida, Pavle
    NONLINEARITY, 2006, 19 (03) : 747 - 768
  • [29] Integrability and geometric prequantization of Maxwell-Bloch equations
    Puta, M
    BULLETIN DES SCIENCES MATHEMATIQUES, 1998, 122 (03): : 243 - 250
  • [30] The Maxwell-Bloch equations on fractional Leibniz algebroids
    Ivan, Mihai
    Ivan, Gheorghe
    Opris, Dumitru
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2008, 13 (02): : 50 - 58