On a class of hyper-Poisson and alternative hyper-Poisson distributions

被引:1
|
作者
Kumar, C. [1 ]
Nair, B. [2 ]
机构
[1] Univ Kerala, Dept Stat, Trivandrum 695581, Kerala, India
[2] MSM Coll, Dept Stat, Kayamkulam 690502, Alappuzha, India
关键词
Confluent hypergeometric function; Displaced Poisson distribution; Factorial moment generating function; Hermite distribution; Poisson distribution; Probability generating function;
D O I
10.1007/s12597-013-0169-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Here we propose a class of hyper-Poisson and alternative hyper-Poisson distributions and study some of its important aspects by deriving expressions for its probability mass function, mean and variance and obtain conditions under which the distribution becomes under-dispersed or over-dispersed. Certain recurrence relations for probabilities, raw moments and factorial moments are also developed. Further, the estimation of the parameters of this class of hyper-Poisson distributions is attempted by various methods of estimation and shown that this new class of distribution gives better fit to certain real life data sets compared to the existing models.
引用
收藏
页码:86 / 100
页数:15
相关论文
共 50 条
  • [1] AN ALTERNATIVE HYPER-POISSON DISTRIBUTION
    Kumar, C. Satheesh
    Nair, B. Unnikrishnan
    STATISTICA, 2012, 72 (03) : 357 - 369
  • [2] Hyper-Poisson Photon Statistics
    Yu. I. Bogdanov
    N. A. Bogdanova
    K. G. Katamadze
    G. V. Avosopyants
    V. F. Lukichev
    JETP Letters, 2020, 111 : 543 - 548
  • [3] Hyper-Poisson Photon Statistics
    Bogdanov, Yu. I.
    Bogdanova, N. A.
    Katamadze, K. G.
    Avosopyants, G. V.
    Lukichev, V. F.
    JETP LETTERS, 2020, 111 (10) : 543 - 548
  • [4] ON ZERO-INFLATED ALTERNATIVE HYPER-POISSON DISTRIBUTION
    Kumar, C. Satheesh
    Ramachandran, Rakhi
    STATISTICA, 2021, 81 (04) : 423 - 446
  • [5] 2-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS
    BARDWELL, GE
    CROW, EL
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1964, 59 (305) : 133 - &
  • [6] NOTE ON THE MOMENTS OF HYPER-POISSON DISTRIBUTION
    AHMAD, M
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1979, 4 (01): : 57 - 58
  • [7] COMPUTER PROOF OF THE HYPER-POISSON NONINFINITE DIVISIBILITY
    DANIEL, EJ
    KATTI, SK
    AMERICAN STATISTICAL ASSOCIATION 1988 PROCEEDINGS OF THE STATISTICAL COMPUTING SECTION, 1988, : 280 - 283
  • [8] q-analogues of the hyper-Poisson distribution
    Kemp, CD
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 101 (1-2) : 179 - 183
  • [9] Hypothesis testing for the dispersion parameter of the hyper-Poisson regression model
    Santos, Daiane de Souza
    Cancho, Vicente
    Rodrigues, Josemar
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (05) : 763 - 775
  • [10] An extended exponential hyper-Poisson distribution: Properties and applications
    Kumar, C. Satheesh
    Satheenthar, A. S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (12) : 4311 - 4333