Quantum Transport Simulation of High-Power 4.6-mu m Quantum Cascade Lasers

被引:13
|
作者
Jonasson, Olafur [1 ]
Mei, Song [1 ]
Karimi, Farhad [1 ]
Kirch, Jeremy [1 ]
Botez, Dan [1 ]
Mawst, Luke [1 ]
Knezevic, Irena [1 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
关键词
QCL; density matrix; midinfrared; phonons; quantum transport; simulation; superlattice;
D O I
10.3390/photonics3020038
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a quantum transport simulation of a 4.6-mu m quantum cascade laser (QCL) operating at high power near room temperature. The simulation is based on a rigorous density-matrix-based formalism, in which the evolution of the single-electron density matrix follows a Markovian master equation in the presence of applied electric field and relevant scattering mechanisms. We show that it is important to allow for both position-dependent effective mass and for effective lowering of very thin barriers in order to obtain the band structure and the current-field characteristics comparable to experiment. Our calculations agree well with experiments over a wide range of temperatures. We predict a room-temperature threshold field of 62.5 kV/cm and a characteristic temperature for threshold-current-density variation of T-0 = 199 K. We also calculate electronic in-plane distributions, which are far from thermal, and show that subband electron temperatures can be hundreds to thousands of degrees higher than the heat sink. Finally, we emphasize the role of coherent tunneling current by looking at the size of coherences, the off-diagonal elements of the density matrix. At the design lasing field, efficient injection manifests itself in a large injector/upper lasing level coherence, which underscores the insufficiency of semiclassical techniques to address injection in QCLs.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] High-temperature and high-power terahertz quantum cascade lasers
    Williams, Benjamin S.
    Kumar, Sushil
    Qin, Qi
    Hu, Qing
    Reno, John L.
    2006 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2006, : 128 - +
  • [22] Continuous wave operation of quantum cascade lasers based on vertical transitions at lambda=4.6 mu m
    Faist, J
    Capasso, F
    Sirtori, C
    Sivco, DL
    Hutchinson, AL
    Chu, SNG
    Cho, AY
    SUPERLATTICES AND MICROSTRUCTURES, 1996, 19 (04) : 337 - 345
  • [23] Simulation of transport and gain in quantum cascade lasers
    Wacker, A
    Lee, SC
    Pereira, MF
    ADVANCES IN SOLID STATE PHYSICS 43, 2003, 43 : 369 - 380
  • [24] 10-W 4.6-μm quantum cascade lasers
    Dudelev, V. V.
    Mikhailov, D. A.
    Babichev, A., V
    Losev, S. N.
    Kognovitskaya, E. A.
    Lyutetskii, A., V
    Slipchenko, S. O.
    Pikhtin, N. A.
    Gladyshev, A. G.
    Denisov, D., V
    Novikov, I. I.
    Karachinsky, L. Ya
    Kuchinskii, V., I
    Egorov, A. Yu
    Sokolovskii, G. S.
    QUANTUM ELECTRONICS, 2020, 50 (08) : 720 - 721
  • [25] High-power operation of uncoated strain-compensated quantum cascade lasers at 4.8 μm
    Li Lu
    Shao Ye
    Liu Jun-Qi
    Liu Feng-Qi
    Wang Zhan-Guo
    CHINESE PHYSICS LETTERS, 2007, 24 (12) : 3428 - 3430
  • [26] High-Power Quantum-Cascade Lasers Emitting in the 8-μm Wavelength Range
    A. V. Babichev
    V. V. Dudelev
    A. G. Gladyshev
    D. A. Mikhailov
    A. S. Kurochkin
    E. S. Kolodeznyi
    V. E. Bougrov
    V. N. Nevedomskiy
    L. Ya. Karachinsky
    I. I. Novikov
    D. V. Denisov
    A. S. Ionov
    S. O. Slipchenko
    A. V. Lutetskiy
    N. A. Pikhtin
    G. S. Sokolovskii
    A. Yu. Egorov
    Technical Physics Letters, 2019, 45 : 735 - 738
  • [27] High-Power Quantum-Cascade Lasers Emitting in the 8-μm Wavelength Range
    Babichev, A., V
    Dudelev, V. V.
    Gladyshev, A. G.
    Mikhailov, D. A.
    Kurochkin, A. S.
    Kolodeznyi, E. S.
    Bougrov, V. E.
    Nevedomskiy, V. N.
    Karachinsky, L. Ya
    Novikov, I. I.
    Denisov, D., V
    Ionov, A. S.
    Slipchenko, S. O.
    Lutetskiy, A., V
    Pikhtin, N. A.
    Sokolovskii, G. S.
    Egorov, A. Yu
    TECHNICAL PHYSICS LETTERS, 2019, 45 (07) : 735 - 738
  • [28] High-Power Mid-Infrared (λ ∼ 3-6 μm) Quantum Cascade Lasers
    Mawst, Luke J.
    Botez, Dan
    IEEE PHOTONICS JOURNAL, 2022, 14 (01):
  • [29] High power quantum cascade lasers
    Razeghi, Manijeh
    Slivken, Steven
    Bai, Yanbo
    Gokden, Burc
    Darvish, Shaban Ramezani
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [30] High-power operation of uncoated strain-compensated quantum cascade lasers at 4.8 μm
    Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, China
    Chin. Phys. Lett., 2007, 12 (3428-3430):