A POSTERIORI ERROR ESTIMATION OF FINITE-ELEMENT APPROXIMATIONS IN FLUID-MECHANICS

被引:36
|
作者
STROUBOULIS, T [1 ]
ODEN, JT [1 ]
机构
[1] UNIV TEXAS,TEXAS INST COMPUTAT MECH,AUSTIN,TX 78712
关键词
Mathematical Techniques--Finite Element Method;
D O I
10.1016/0045-7825(90)90101-Q
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Several techniques for a posteriori error estimation of finite element approximations of time-dependent problems are developed and tested. These include a discontinuous Galerkin method for linear convection problems, a residual-type method for diffusion problems and an operator splitting method for convection-diffusion problems. Some extensions to certain classes of nonlinear hyperbolic problems are also presented. © 1990.
引用
收藏
页码:201 / 242
页数:42
相关论文
共 50 条
  • [31] A posteriori error estimation for generalized finite element methods
    Strouboulis, T
    Zhang, L
    Wang, D
    Babuska, I
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (9-12) : 852 - 879
  • [32] Remarks on a posteriori error estimation for finite element solutions
    Kikuchi, Fumio
    Saito, Hironobu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 199 (02) : 329 - 336
  • [33] A posteriori error estimation for standard finite element analysis
    Diez, P
    Egozcue, JJ
    Huerta, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 163 (1-4) : 141 - 157
  • [34] Posteriori finite element error estimation for diffusion problems
    Adjerid, Slimane
    Belguendouz, Belkacem
    Flaherty, Joseph E.
    SIAM Journal on Scientific Computing, 21 (02): : 728 - 746
  • [35] A posteriori finite element error estimation for diffusion problems
    Adjerid, S
    Belguendouz, B
    Flaherty, JE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 728 - 746
  • [36] A POSTERIORI ERROR ESTIMATE FOR ADAPTIVE FINITE-ELEMENT MESH GENERATION
    HAHN, SY
    CALMELS, C
    MEUNIER, G
    COULOMB, JL
    IEEE TRANSACTIONS ON MAGNETICS, 1988, 24 (01) : 315 - 317
  • [37] A-POSTERIORI ERROR ESTIMATOR FOR NONCONFORMING FINITE-ELEMENT METHODS
    AGOUZAL, A
    APPLIED MATHEMATICS LETTERS, 1994, 7 (05) : 61 - 66
  • [38] A posteriori error control for finite element approximations of elliptic eigenvalue problems
    Vincent Heuveline
    Rolf Rannacher
    Advances in Computational Mathematics, 2001, 15 : 107 - 138
  • [39] A posteriori error analysis for stabilised finite element approximations of transport problems
    Houston, P
    Rannacher, R
    Süli, E
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (11-12) : 1483 - 1508
  • [40] A posteriori error control for finite element approximations of elliptic eigenvalue problems
    Heuveline, V
    Rannacher, R
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) : 107 - 138