PARABOLIC PROBLEMS AND INTERPOLATION WITH A FUNCTION PARAMETER

被引:0
|
作者
Los, Valerii [1 ]
Murach, Aleksandr A. [2 ]
机构
[1] Chernigiv State Technol Univ, Dept Higher & Appl Math, 95 Shevchenka, UA-14027 Chernigiv, Ukraine
[2] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
来源
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY | 2013年 / 19卷 / 02期
关键词
Parabolic problem; interpolation with a function parameter; anisotropic Sobolev space; space of generalized smoothness; refined Sobolev scale; slowly varying function; isomorphism property;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an application of interpolation with a function parameter to parabolic differential operators. We introduce a refined anisotropic Sobolev scale that consists of some Hilbert function spaces of generalized smoothness. The latter is characterized by a real number and a function varying slowly at infinity in Karamata's sense. This scale is connected with anisotropic Sobolev spaces by means of interpolation with a function parameter. We investigate a general initial-boundary value parabolic problem in the refined Sobolev scale. We prove that the operator corresponding to this problem sets isomorphisms between appropriate spaces pertaining to this scale.
引用
收藏
页码:146 / 160
页数:15
相关论文
共 50 条