PERTURBATION ANALYSIS OF BOUNDED HOMOGENEOUS GENERALIZED INVERSES ON BANACH SPACES

被引:0
|
作者
Cao, Jianbing [1 ]
Xue, Yifeng [2 ]
机构
[1] Henan Inst Sci & Technol, Dept Math, Xinxiang 453003, Henan, Peoples R China
[2] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
来源
关键词
Homogeneous operator; stable perturbation; quasi-additivity; generalized-inverse;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X, Y be Banach spaces and T: X -> Y be a bounded linear operator. In this paper, we initiate the study of the perturbation problems for bounded homogeneous generalized inverse T-h and quasi-linear projector generalized inverse T-H of T. Some applications to the representations and perturbations of the Moore-Penrose metric generalized inverse T-M of T are also given. The obtained results in this paper extend some well-known results for linear operator generalized inverses in this field.
引用
收藏
页码:181 / 194
页数:14
相关论文
共 50 条
  • [31] A NEW PERTURBATION THEOREM FOR MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS IN BANACH SPACES
    王紫
    王玉文
    Acta Mathematica Scientia, 2017, (06) : 1619 - 1631
  • [32] Perturbation bounds of generalized inverses
    Meng, Lingsheng
    Zheng, Bing
    Ma, Peilan
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 296 : 88 - 100
  • [33] A NEW PERTURBATION THEOREM FOR MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS IN BANACH SPACES
    王紫
    王玉文
    Acta Mathematica Scientia(English Series), 2017, 37 (06) : 1619 - 1631
  • [34] On Stable Perturbations of the Generalized Drazin Inverses of Closed Linear Operators in Banach Spaces
    Huang, Qianglian
    Zhu, Lanping
    Chen, Xiaoru
    Zhang, Chang
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [35] On perturbations for oblique projection generalized inverses of closed linear operators in Banach spaces
    Huang, Qianglian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (12) : 2468 - 2474
  • [36] Perturbations of Moore–Penrose Metric Generalized Inverses of Linear Operators in Banach Spaces
    Hai Feng MA
    Shuang SUN
    Yu Wen WANG
    Wen Jing ZHENG
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (07) : 1109 - 1124
  • [37] The generalized condition numbers of bounded linear operators in Banach spaces
    Chen, GL
    Wei, YM
    Xue, YF
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 76 : 281 - 290
  • [38] Generalized Hirano Inverses in Banach Algebras
    Chen, Huanyin
    Sheibani, Sarjan
    FILOMAT, 2019, 33 (19) : 6239 - 6249
  • [39] Continuity of generalized inverses in Banach algebras
    Roch, S
    Silbermann, B
    STUDIA MATHEMATICA, 1999, 136 (03) : 197 - 227
  • [40] PERTURBATION ANALYSIS OF AT,S(2) ON BANACH SPACES
    Du, Fapeng
    Xue, Yifeng
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 586 - 598