KAM THEORY FOR PARTICLES IN PERIODIC POTENTIALS

被引:34
|
作者
LEVI, M [1 ]
机构
[1] BOSTON UNIV,DEPT MATH,BOSTON,MA 02215
关键词
D O I
10.1017/S0143385700005897
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the system of the form x + V'(x) = p(t) with periodic V and p and with [p] = 0 is near-integrable for large energies. In particular, most (in the sense of Lebesgue measure) fast solutions are quasiperiodic, provided V epsilon-C(5) and p epsilon-L1; furthermore, for any solution x(t) there exists a velocity bound c for all time: \x(t) < c for all t epsilon-R. For any real number r there exists a solution with that average velocity, and when r is rational, this solution can be chosen to be periodic.
引用
收藏
页码:777 / 785
页数:9
相关论文
共 50 条
  • [41] ACCOUNTING THEORY - KAM,V
    SIMMONS, JK
    ACCOUNTING REVIEW, 1987, 62 (01): : 239 - 240
  • [42] Quantum tunneling of spin particles in periodic potentials with asymmetric twin barriers
    Liang, JQ
    MullerKirsten, HJW
    Zhou, JG
    Zimmerschied, F
    Pu, FC
    PHYSICS LETTERS B, 1997, 393 (3-4) : 368 - 374
  • [43] Transport properties and efficiency of elastically coupled particles in asymmetric periodic potentials
    Igarashi, A
    Tsukamoto, S
    STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 319 - 324
  • [44] EVOLUTION THEORY, PERIODIC PARTICLES, AND SOLITONS IN CELLULAR AUTOMATA
    PAPATHEODOROU, TS
    FOKAS, AS
    STUDIES IN APPLIED MATHEMATICS, 1989, 80 (02) : 165 - 182
  • [45] CPA THEORY FOR JUMP DIFFUSION OF PARTICLES IN PERIODIC LATTICES
    KASKI, K
    TAHIRKHELI, RA
    ELLIOTT, RJ
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (02): : 209 - 220
  • [46] SEMICLASSICAL PERIODIC-ORBIT THEORY FOR IDENTICAL PARTICLES
    WEIDENMULLER, HA
    PHYSICAL REVIEW A, 1993, 48 (03): : 1819 - 1823
  • [47] Weak KAM theory for potential MFG
    Cardaliaguet, Pierre
    Masoero, Marco
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (07) : 3255 - 3298
  • [48] New Identities for Weak KAM Theory
    Evans, Lawrence Craig
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (02) : 379 - 392
  • [49] A weak KAM approach to the periodic stationary Hartree equation
    Zanelli, L.
    Mandreoli, F.
    Cardin, F.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (06):
  • [50] New identities for Weak KAM theory
    Lawrence Craig Evans
    Chinese Annals of Mathematics, Series B, 2017, 38 : 379 - 392